Sheaf Theory Bet: Gimés.

Big piciure : S’heaf ik’org is a method to obtain global information

'ﬁ"”” (ocal Mformanm.

Mativation : Most -probkms com be solved without shaaf -ng-ad w; thaet
chenf theoyy wiakes things hard to com prehence.

presheaves and  sheaves

(oef1 A -{”lshe“f F owera *@rvbjiaj spae X is
@) An assignment 1o each Nonempty open sot UcX of a set Fcu) with

elements colled sectioms.
> A collection of mapping S ( called yestriction homowmor phisms )

¥y @ F(u) — F)
for each pair of open seks U amd V' &1 VC U satisfying
4 .r5 = :du (2) For U:D\/DWJ .r&; —y-x.-rl;
[Def] Cmov.J presheaves) Let F,H be two presheaves over X.
A morphism h: F—=6 is & ollection o{" maps
hv: F(U) — V)
fof each open set U in X >T. the {ollow«‘y dc‘ﬂ@mm Commutes
TW) —> &U)
ua l Y
Fv) — )

F is sad fo be a sub-Presheaf af 4 if the maps hy above
ore inclusions.

vel X

tRmk] Roughly speaking, presheaf over X has ihree lagers.

movphismg

‘!:ﬂlll! hir er
thivd laﬁg /Hom(‘;(u;,:nv,) Hom sets 4(U) wnd FY a0 third by

J ln ; b
Secon jor  HU HV)  each open set” assigh o set- Fr. "
' ‘ 19 set” ()
First lagw U V  oPensedsiny

Hom ['_]:[u)) q‘_(v) ) = {,3 Usv [ Sheat of 'f\md'ion.c/ Hom ( Z(v), Zny)

containg incelusions.
s o/w



“Then wnors v‘f ‘Pr(sheavej should Preserve this 3 leyers,
4,6 be two presheaves over X . Amor h:F—§ is
assign ench element an element inthe Some (syer Compatitively.

X W"J
third "“\‘j" Hom (?-(u) %)) — Hom( 6(0), 5“/) )

secow layer  hy: T(U) — (V)

First ""3" U ———Y

h.' F > 4 Gve ‘those maPs Sa‘f;S{lf}"j : ‘Hhca” be ‘:"p“{%d Yo

be Just & Com il of
’T—(U) 4(v) h: T() = Z(V) beme
the assigy ment at fivst and tovd
‘r n
\lf Q 4v l.«\qer osj -ched

Hv) = — 4(y)

3% A ctuall , 1 belive presheaf owr X is @ 2-oxt and  movs ane
- functors (Lo check it's @ 2-cat s So awful ond seems not
very wseful of fwis stage. o it's Just o Guess. Bur it's eacy
to prove the cecond anol third layer Combine satisfying conditiont "o

form o 4-Cat)
T think this “cateyory version” or just “layer versim can
explicity show what dato -preshesves cnioin,

[Rmk]I Wuen we endow mure structure to T(u) , e9. FU) is a
group, all mors in def should be grp homo.

[DefJ A —pnzshea{' F is coled a sheaf i{- for every ce lectim U:
of open subsets a‘G X with U=UU; then & saric{'-e.s
Axiom S : If steFu) with TY.(s)z TY(t) then s=7.
{Ax:om S»: 1If Si€F(U;) and {ar UiNU; 3¢ we hove
‘rum_bfs) w (S5),fer Vi3
+hen thepe exists on s e (V) st Y. (5)=S; fov Vi.



LRmk] Fer “good" patdies Of [ocal functions, we can Jluc e
-louglobal one. Axiom S. Cmvices existence and Axiom S,
Convinte§ uMgueness,

LRmk] mors of sheaves wre the same as mors of Presheaves.
[Exp] (preelm{ and not a sheaf) X= §0,6F with digcrete -topo.

field :
Ty= B(b)=lk. and Testrictions are all zers. Thew i violates
Axiom Sy

Then what’s the Case on m.{.?u/hat's pre sheaves on mf ?
Tdea:

S - Struet —o tellg You what’s S'F“"" iong on M,
M

(Wawifold)

Construct sheaves of S - fune tions. =

Let S = dif{ereuﬁable E,, aal'ana!l/tic A L or Comp [ex -anay-tc’c O
é é '

C” funetiong feal-am'(jﬂc functions hobé-rqvlu‘c Funcrion

Ioef] (S -strueturg)  An S- structure Sw on & K-manifold /M

it a ‘Fﬁmi!:'j of k-valued comtineus 'F/m:fivn.s dtfmed on -the cpen
sets of M 4.

@) YpeM, 3 open nbh Usp and a homeo U— ' ck”
St. VorenVEU , f.y—sk &S, iff Foi' i htv) =k € SChw)
Q) If F:U>K where UzUV; and U; ®Pen in M, then

fes, Hf flu €Su. (9. U= Up . Up is open nbh. o p then
(M,Sx) is @ 8- manifold. we n use &) in def)
[Defl Cx(U) := cowmti functions x = k , it’s & sheaf of X .

Def)(Structure sheaf of The w.f) 1oy % be a S- monifels.

S (U) := the § -{functiens on U, defines a sul».sheaf of Cy
Cx., Ax, Ox are sheaves O'F d.’f{e,rwtiablc,f&l-anawh'c and
kolomwphi( -ﬁmtﬂons on Q@ mf X.

[Rmk] One way think S-structure is Just a sheaf, That's wrong,

5 -structure Just tells YU Whal’s S—functim on the mf.. S-shuctue

is an ingtvuction book, then we call dell sheaf of S -functiong
on S-manfold M, which s So mlled sheat structure.



P.uhw,{ of modules occur veyy often in the world of mf Well see
tight relationship betwoen cheaf of modules @10 S -bunsfles.

ef] R is a presheaf of commutstive ring and T is a presheaf
of abelion groups, both over a fope space X. We sy m s g
presheat of K- modules if

(1) For each oper V2 X , M(V) is a R(V) ~module.

\2) For each V?"UZT"X, VaeXR(W)

mU) —= (v,

v v ( compatibleness of
‘Tm 4 l u/) J/f'm v module stnucture ool
Rv(ad)e- triction in cheof
RV < Teticton s
mw) > N(v) )

If Mis a Sheaf, then we Say m is 2 sheaf 07' R-madles.

ERMk] Sh&ﬂ{ﬁ sheaf m Qg

/‘*—\X - \x

Q/\ 7N
/\X
[Expl Let E—=X be an S-bunblle. Defme a presheaf L&) bd

setting S(E)() = S, E) . sections of E over U fr veE«,
104 ether with naturpl vestrictions. S(£) is called the sheaf

of S -sections of *he vector bundle £. LE) is a cheaf of
S\ -medules Jor an C-bundle E— x. For example, we haye
s heaves of‘ diﬂmﬁal fwms E; on a diffamf-‘able m,f, , or
+he shaaf of differential forms of type .5). €22 on o
Complex mi X.



[Exp] Let (9¢ denote the sheaf b‘f holo functions in C. Let
T dengte the 8heaf 'zj Setting
Fw)= ) if oy
Jw)={feqQ)|fe)=of if oey

7 is a sheaf of g - modules.

[Defl Let X be a Complex m.f with Structure &Maf Ok . Ther a
sheaf of (Dx-modules is called an analytic sheaf.

CRmk] we introduce onalybic sheaf bewuse it ocuyrs frequently

The rest a{? this part woe -Focuc on the felatimship between
bundles and sheaves. Just as in algebraic geometry, we hope
to find & Corvecpemdence between §bundles over X35 and

{shepwes over X5 Clenrly, to make corvespondence holds . W&
need put festrictions on  bundles and sheaves, :.e.,

the Question s tv -find =?.?" in the ‘Fvllow\inj cen of
prove e bijertion

{22 bundles over Y § &3, § 27 sheaves over X §

[Vef] Let R be a sheaf of commutative tings over 2 topolggicel

space X . p-terms

(@ Definc .RP,'FOT P20, b’ seﬂinj ﬂ'(U)=j\’[U)@"’QR(U)

and natural restriction. RP is a sheaf and we call R® The
direct sum of K. (p=o corvespond:” to 0- module)

) 1f m is a sheaf of R- modules s¥. M = RP for some P20
then 77 is said t0 be a free sheaf of modules.

< If Misa sheaf 0f R- modules st+. eath x&X has a
nbh. U st My s free, then M s said to be Loca{ly free .

[Rmk] M|y is the restriction 0{ Sheaf M , the d&'fam be quessed
eascy and we left «s an exercise,

LExp] Let T be the locqllj free Shea-[ o{ S— motule



where S is the stucture sheaf of S -manifold (X, 8 ).
The for each zex , 3 a nb.h U of 2 st ml, ’..—E(glu).r.
To Unwrop the Quation , for each open VEU, we have

My (V) = (Sl)"(V), e, MWV) = S(y) =f 3,5 %eSw]

:f{':V—?k' ‘Wr:fe £ 2la,-4;
dieswy 3

Hence, Locally free sheaf of S-module wieans fr eath xex

there gxists a wbh Uc of & st M(U) are vector-valued
function with eaqch component o S - fun ction,

CTam] Let X=(%,$) be @ connected S—m.}. There s a bijection

$ is0 classes a‘f O-bundles over X f ‘1‘29{'.“ classes of Locally free sheaws

of §-modules over X
Pf‘ = Given a S -bundle E—X, we need to construct a [oca]_ly
Pree sheaves of O-modules over x Where C is the strucrure sheaf,
We claim sheaf SC(E) is the corre,spond:ncg (ocally free cheaf of
S- modules. It suffices 10 show LLE) is [Na;’l] free.,
Bc" local ‘iﬁvia[i_i‘] of bundle E, for any xeX there exists a nbh, U
of a, st Eluz Uxk". key: Pass this iso o She@f,
Claim : S(E)ly = S(UxK') Lndeed, for YVopen in U, we have
StE)y(v) = SLE)v)= SV, E) = S(V, uxk") = S{UxK")(v)
Thus Ste)y, =S(UxkKT) .
Claim : S(U¥KY) o~ S!u@"' @E.]u

#T

It suffices to show SCuxkr)(v) = Sl,@-- @S’u (V) for any V-?U.

S(UxK)V) = S(V, U xk') =€f:V—->ka' §: V2" write as
Ar—> C‘X'\’”) g, -, 9) ﬁ""“f)’i'j J;ES(Vj



SIUXKI(V) «— S[L,AD @ Shilv) = Syt

T > (8, 8,) =8
V'-)\/“\< {
i 'x!-d("aﬂ"")( J

s clearly an (80,
& Given a loally free sheaf of €-medule L, we wi constrecr
a S-bundle over X.

Sinee L is lm!v '{‘me, we can fimd on open covering {y.3of X
and a family of sheaf iso  9,: 2|, =2 S,

[Rmk1 « oloesn't olepend on Ua since X is Connected.

Define 30\3-' S"IU\I\UA - Sh'ludnup b\y g = 94_%"

Since  Gu, s are Sheaf maps, Gap is also a sheaf map.

Sheaf map 3,p S a famJ q‘ mors , one a,l them S

( dp)u‘quﬂ 5 *IU&nUp(U‘nUp) — ’S‘ ’Udnu,(udnUﬁ)

s (Uan Ue)" $lun Uey*
Claim: The sheaf map 9ag is cquivalent to fhe map
dap : UaNUg — GLLAK)

Lndeal, S(Usnyp)* = {ca, .81 9; € Stuanup)S is a vector
of {:u""-ﬁ""s We can also view it as &« vector—valued mep.

S(Uany) = { £ Vg > KT | Beoscato, -, s, 8, € Scuunup)f

Renee, (3‘9)0‘[\% : Sng(\ Up) —_— S(Udn()ﬁ)
LF:UaUg— k"] > [h *UsN Uy ']

i-e. (%)MU’: UaNUg —> QL+ k)
AC iy ﬂ,@(x) s$.t. h(f)-'-%(a).f@r)

Then (34)‘/ (3‘P)u vt ), - Se 3ame g unk— Glek)
equvalent to the or; Jmul, Sheaf maf 9.



let F= £/Ud xk'/«- where ~ ;s (%) (2, 3..,(«)-{),
L VaNip ¢

e trvilization o E (8 [lxkr] = Va x k.

Smce Qup=Jar =3:% 353 23,97 =94, , 1.7 e Aronsition

-funC‘l ions -far vectwr bundle E .

The cormsPond&ﬂce oloesnt oepepol on wepreseutation o{ iso classes,
Then let’s check it's a bifection,

E > SO E=UUaXK]n , (21~ (x 4,%) Whore
Ua i3 the trivia ity of sheaf SiE)

By comstruction, Un is also 1he 'HiVit'i:y of bundle E. Hence theyre the Same,

SE)H E+—> S(F)
v\wk. is also

cvio.l czotion on U«l "l:fvallzmwn

S(&)
CRmk] How bundles and lacaly free sheaf ef oS- moolde related ?
We only consider congtruciion of a bundle from 1he sheaf
To construct a bundle, we need to glue tUs ’<l<‘r3,k , e, let E=uu.nk7,
So we ony need to consider how to glue, i-e, what's equivalence .

velation '~ " P The 'ﬁl/ou/iy picfure Shows that to glue two trivializatin
Vi XK' and Up xk", We only need o assign each x€ UaNUp an clement
n G(1, k), which is an outomorphiem on k',

\<"
@ @ for keU.t/\Up , it SU‘[:{iCeS 1o SIUC two ‘Fibe(g

Ua k" to o fiber. It's equivalent to Give
* nigo K"'— k" | then we an glue two
4 “_’33‘3?

f:bers Ej (%, %) ~(~, Ju€) .
345—' UJ\U@ — GLitk) &'xacfly ‘PI“C'P this tvle. 0o

We'll end this part by introduce the generalization of local



free sheaves . This Gemeration con eyen be defined on complex
m.f. with sin@ulav:’ries — complex spaces. An anawtic .shegf
on & complex m{ X is soid fo be wherent if for each
€ X +there is a nbh. Uof x st there s an exact sequene
of sheoves over (U, ol — 04, — T|,—>0 for Some

$ ongd §. More detoiled con be see in Gathmann s clgebraic Jeometry

Resolutions of sheaves

+wwotion, ) ) .
MOAVZ‘; on X is K cavrier af (ocalized mformatinn about the spae X.

To get global information , we need to apply homological 0lg 1o sheaves.
In +his section we’ll do the prework.

CLOefl An étale space over o topo space X is a topd space Y tgether
with a continous surj mapping n:Y—x St s a local homep.

CExp] CRelationship between bundles) letnE = x be a bundle cwr X.
Then  sury map L E = X l,oml!y IS Tlly: Uxk"—U 8 a homeo
since k' is comtrettible.

From the eromple, €tald’ spae is a generalization of bunclles So
we can glso define Sections for étald space.

[Def] A section of on Etule space ¥ TuX over an opan set USX is
o continous mop F:U—>Y 5.t Tilef = idy . The Set of Sections
over U is denoted by I"(u,Y),

Question: Given & presheaf T over X, can we construct an Etale” space
"f——))( associated fo F 7 The answer is yes and we how :

CStogan] éiald space associated o -presheaf is the union of stalks,

Loefl (stalk) Let ¥ be a presheaf over X. Let F,::= lim T(v) wr.t.
xey

restriction mops {+Y%}. We all F, the stalk of ¢ at =

CRAmk] The direct sum Foi= l_ign¢w) meang +there are {'Fx,*gl\)ax},
xey

"

U —~° FW

:'E’D\q S for amy xeU,V oand for each commutative
x NE (60,8 ore dotas of liwm )

4



) 7w

t st 1 t Fx—m W
dia gram V3o there exists umigue 9

.tU
I, 7y

W\ S o
Fu 2w
CRmk] If the structures are preserved by direct sum i-_;,?, , then %

mherent this structure. For instance, ,f F(v) is abelian grxp or
ommutative £ing, then S0 s Fx for xev.

sd. the new diasrm Commytey

CDef] Consider Oata df the direct sum 4¢: FW) — F. . If se F(v),

we call Sx:=TY(s) the germ of sat & and s is Called a representatie
for -the gom S«

CRmk] P'resmaf V.S. Smlk v.s. Germ .

’F 'Fg Sx
-thea{ valued 1¥ we comside.r 'I(u) s a set of mafs
x stalk
a_ T ) — fF-/ f U—s torget space? then Wwe hawe :
x

S —> g c-vae.rm

fepresentative
for the germ

T4 8Cx)= 8/tx) then Sx=Sw .

CConstruction] let F:=U F. , and let L: F =X b\(’ smdiy points

e

U
x€eX
"f- an etole space, all remains is ‘|'DJ'V8

in T, to x. To make

¥ a topology and check T: F—X is a aal homeo

For x eX,)
consider open
w.hh. UV og =.

keg:Endow topo of F by tope of X.

Fortunately, we can find a section so mowve
U to & and let the image in T be opes
The section is easily find when we draw
the left picture. For seF(v)

et§: U— F , xr»5x .

[ 3
Sta lks paramet rized

by points in UE X
S)zfsx1xcV}

Since MoF(x)= T(sx)= x, s0 T3S =id meani
that 3 ic a section,ie,m is local bijection
In picture,it means S bijective to



Let (SWIUEY%, se‘tw)? be a I>as|'s-[-7w the -opo rf T.
Then Ttls,s and its mverse § are both conti, Makiv 1 o local homeo,

[Exp] If the pneshezf has algebmic properties ?mserved fy direct

limits, then the Etalé space F inherits these Props. For instance,
suppose F is a preshenf of ebelian grps.

® Each stalk Fx is an ab grp.

@ Llet FoF ={(s.4)e FxF [ntr=nit) } Lies s,t lie in Same stalk Fx)
De""me M: Togq — F , Gnjty) 2 Sx-tr . 1t's wdldefrned s'nce

Sx,tx€ Fx which is an ab gvp. U 7S & Conti map , indeed, for he;:(u)/

T(V) is an open set in T, Sinte h € F(U) which is an ab grp, 3s,

m TWV) S+ h=5-¢. Z(U) = SSt(U) = ] (5-t)x ler} =f8:.--t,, lweU}
so the inverse M'(h(U)) =Sz, te)[xeUF & FoF Li-e)

$(U) s ) =T (0,b) € 3W) x TV) | T=mg}

= § (sxdx) | x el = 47 (RIW)) .
So MIW(V)) =3(uyeT(U) is open in Fot

@ I'(U,F) is an ab gnp under pointwise addition, ie.,

for BE eIV, %), EH)= 300 -Fm  ¥xeU. Since

Tt s 3"\'6" |:y compositions :
VB g7 £ F

so §-t S conti.
Xi—> (Sx,tr) F? Sx-Cx

o

then we wont to go 1h€ invers — given an étale” space , we

want to associate it o sheaf, The netyral chojce is .f"(-,?),
the shgaf of sectins of &

LDefl Let F be a presheaf over a topo space X and let T be the sheaf
of sections of the etale space T associoted with F. Then we o
7 s the sheaf 9enerated by ¥,

CRmk] Sheafication is take sheaf ¢f sections of &tald space. Etale space (S
o good way pass from precheaf to sheaf.



Question: What's Telationship between F and F? Lets fmd mors
between them first. There is a Ppresheaf mor T: T — F , with
TWw:FW=FW=TWT)  g,5)= 7. Wher Fbe 2 sheaf we have:

CThml If T is a sheaf, then T: F—F s 4 she.af (so.
pE: I suf{ices to show Tw: F(U) — F()=T(V, £) is bijectie.
Show Ty is inj. : Suppese a,be€ F(U) s+ TWD=Tk) & Iy ),
Tula)= @:U— § with Z(x)= @a= TYQ where Y. F(w = F. is the
dato o‘f i-'{;:') . Hence Ty@=Tyh) means ¥Yqa = tY b for al xe V.
FRCE* For direet limis A3 2294 : X1, Xy EAi With
wrect llwh s ) wen 1, X3 EA{
J N v o a‘g
L
“317‘-)=fic"z),ﬂere exists ] sf, ‘fi'(xu)=f:j (xy),

Hence, there exists open set U ax , <.t f&a: f‘%b,

Uz MV, Tue=tTib means a=pbEFU) by axiom s
o{ cheaf.

Show Tu is Surf. i Tv: FlU)— Fw=TW,%F).

let 6€ (U, F). Pick xeU, we hwve otx) € F, . By dineet
limig pwperty, there exist a nbh V3x and Se F(v), st
fVS§ =0 (x). Snce t%S = Sx= Stx)=Ty(s)(x) , we have

T, (5)(%)= 6(2). o ond Ty(s) are sectons of étalé
space, and sections have local inverse 7i, hence ony
two Sections of étalé space agree ot one point Wil
agree at a nb.h. So there exists a wb.h W of x,

T is a shmfww?{,z.j T Ty
L A4 ‘? J,Txr
The above process Can be done for any %€U, hence we can
find an open cover {UVi} of U and s; e F(Ui) st Tly, = Tu(8)



We want to {wl seTW) st Tyls) =06 ,ie. WwOly =y, = Tuls)
So it suffices to {ind se F(u) st Tolsdly; = Tvils:). Pay same
trick pf Commutat ive d%ﬁ\tyvhmi

) 2. Fw)

th] D[y
_VEY We obtain Twis)|y, =Tulfus
Fod = Fwy 7 o Soifila SN frimy seF0
U

So we suffices o {mnd sew) ¢t tYs=si. Its eay to
find S by Jueing.  Tuny; ( TU‘:’,‘MS'.) = a'lu;mj = Tviny; (".i’,;,gs,) and
tu""’ﬂ i in’e,c‘tive, we have "'Ul:/.'w_j Si= Tuol:f% Sj Since F s a
sheaf and UV=UQU;, tere exists seF(U) s+ 1Y 6)=S5: . By
above wnalysis, we Complete the proof.

LRmk] for a cheq_-f F ., find étalé space ?l:' and then +eke £ = T'(-,F) .
The thm {ells you = F , $0 P Comaing m-{. ( information) of F.

£ contains inf. of F,s0 T contains inf of T But F is constuctel
from £ ,s0 F also Confains inf. of E Iu conclusion, the €talé Spage

contains sume amount inf. aS sheaf ¥ —— hence, a sheaf is very
often defined to be an Etald’ space with algebreic structure alov:j its
fibers. But when we encounter presheaf, the associated dtale” space

S an auxih’ar_y conStruction.

CRmk] For sheaf F, we may not distnguish F and Z , i-e., we may
identify two notations F() and £ (U, E) in some cases.

=

CRmk] Relationship teiween F, T, T .
% aita3ue i sel e U}
“35 fw)

') Te (v, %)= f

@ ?‘?)zs’
/U with s a Tepresentative of sx

T lnb;



tSIo,gan] staks emain unchanged by sheafication
= l_mr(u, T) = me'(U, )_

ﬂ‘U

CConstryction] Weve Rnown Fox = l'm FW). Actwally there s a

IJ
Concrete Comstruction for Fx, that ol F. = i FW /) where

(,V)~ (9,w) ifF there is an openxeH VAW M’- ﬁ'.’-l'= th9.

1. Gven & sheaf mor ©@: F— 6 , it induces & stalk magping @:F.—6,
bj . [F.U)] = [Pyth,U) where [-] means eguivalence class.

2.Let 0 :F-> 5
Lor all xex.

3. ker(Px) = (lxer®) ,
More dlet ails -

y%:F— 4 be sheaf mors. Then @=% iff Cu="Yu

https://web.ma.utexas.edu/users/slaoui/notes/Sheaf_Cohomology_3.pdf

The rest part is about exattness in homological algebra.
[Defl Let F.4 be sheayes of abelian grps over Space X with 4§ a

subsheaf of F. Let Q be the sheaf genevated by the presheaf UH"‘%{U)
Then @ is called the Quotient sheaf of F by § and denotel by F/5.

CRmk] Q is the shen{icarion of the presheaf v~ F 91y

P) hw[e,
Q) = T (W) x FW/4W) .

LConstruction] Let's construct a notural sheaf surjection & — F/4 - One
may think it’s surqy projections Fw) = FU)/§(v) , but note that
T/5(U) = FWGu), so +here stil remaing some work. Denot H be the

precheaf LU= HU)g)], - Gneider the presheaf map v: F— H

with Tv:Fw) = ?(01/6(0) . 1t induces & mep between stalks
Tx: Fx — Ha [y going to direct |wmit -

‘F(w—a :r:w)
Then we induce a oowh maPpmg Of ?i'm{" Hw)
Etolé spaces: T:F — H . b S,

x> Tx(x)

Consider +he map induced on sections:
2, T3 = T(U5)

Si— T

Irs well olcfmd just tonsider : A, B8 be &alé speg

T A Tohs = 7.5 = id, for VSET(UA)
W X
U‘fé:. so hseX(u,B).




This is the desired shea_]c mapping onto the quotient sheaf . D

IDef] (exactness) 1§ A.B, and C are sheaves of abelian gips over X and

ADLBMNEC s a sequence a'f' Sheaf mors, then this
sequence is exact at B i{ the induced seguence on stalks

Ax gfa,BxL& is exact 'For all x e X. Ashort exact

seguence is @ sequence ©—> A—> B—» L —0 Which is exact
at A L. ond C, where 0 dencies the (onstant Zero sheaf.

CRmk] Abelian property Gan pass o direcr sum. So stalks are also abelian JPps
[Rmk] One may ask , why dont we define exact at B by exactness
of the sequenee ACy)—BW)— C(U) Tor each open U P Tuot’s

beuse exactness is a local property. Locally exact Ur—Br—> G,

doesnt mean globally exact AW)—~B(U) =Ccv) . The usefulness of

sheaf theory s precisely in incling and categorizing obstructions
+to the “global exactness’ of sheaves .

CExp] X is m comnected complex md.. Let (O be the sheaf of holomorphic
Lunctions on X end let (9% be -the sheaf of nonvanishing holomorphic
functions on X which is x sheef of ob grps under multiplication.
(Nonvmishivw implies we can do division ,which makes % a sheaf of
ab grps). Censider the sequence :
0— Z iy C?—.-s (9'—’0
where 2, is the constant sheaj Z(V-=2, iis the incluSion map
and exp: (9 —s (D* is exp, : OlV) — (V) f+—> exp, ) With
&Xﬁ,(f)(z) = &Xp[:).m’f(z,)‘vz eV

To show this SequenCe is exact, we want P show at each xe- X,
02 2x=2 i'—; O £2&, (9% —0 s exact.
Imi,=Z, so it remains to check ker(exp,)=22 .
Use conrete congtruct for stalks (9, E<F= | ro*
[,02] > [exp,h, U]

Let Lexty(f), UI=1€Ox , it [empranifs,u] = = [, 1] . By def
ot equivalence closs, there exists nb.h, VU st expomifeo)z,

VxeV. So £6) is a cons+ant map on V, i-e.,



[(HW)]=[cLV)] .leZ. Hene ker(exp, )= 2. o O

LExp] Let A be a subsheaf of B, Then 0—A—>B—BIA —o0
is an exact sequence of sheaves. (Noie that only can sheaf of
obgp can do quotient, So A, B dre sheaves of ab gips, althogh we
oo not exph‘cig stale it)

$f; LFect]: Gilimit lgg in abelian Cateday 'mees exactness.

Since 0-> F(U) = G(U) — G(U)/Fy) —0 0re exact Sequence of

ab gps, we have o0— lim FU) — LimG(v) = Lim Gvy (Fty) —o
re, 0— Fe =6, — Hx—0 s exact , where H is presheaf u.-af't%’

Since stalks remain unchanged under sheafification, we hove

He
0 F, = G, — (F/a):_,, is exact., Hence sheaf sequence

0—=F> 6> Flg—0 IS éxact.

[EXP] Llet X=€ end () be the holcmovphic -{'uucrim: on € Llet T be +the
subsheaf of (O consisting of holomorphic functions Vanishing at Z=o0eC
Then b\y the above example, o— T—> ()= Oy —0 5 eract
sequence of sheaves.

At 240, the Sequence is 024 — £ — 0o —0

At 2:zo, the soquence is 020 —>C—~> C —0°

CExp] X is a comnected Housdor{f space and a,bey fulfilling a4p.
let Z denote the constant sheaf of integers, ie. ZV)=Z.

let I denote the subsheaf of Z wich vonishes at a ond b, that means
iy T(VI— Bv) is an inclusion with 3,0):it):0 for each UV

Sheaf 2 :EfZ'-’ZlU) Then we have exact sef

—~_ X 0>T—> 228/ —0
@

1f x=a or xcb, the seq of stalks is o—>0—2>2Z 22—
If xxaand x2b,the seqefsialks is o»2>2—s0—0 o

The following sheaf means sheaf of ab gvps or sheaf of wodules.



Coef) A graded sheaf is @ family of sheaves indexed by integers,
F=[T% ez . A sequence of Sheaves (or sheaf sequence) is a
graged sheaf connected by sheaf mappings:

P '-F-°‘Sz-°':|:1 diygioa, g3, .. 0O
A differentinl sheaf is a sequence of sheaves where o ol =0

n @) . A tesolution of a Sheaf F is an exact ceguence
of sheaves of the form

0>F o FoF'—= = F'ms -

which we also denote s\ymballfa{‘y by o0— T—T*

[Rmk] Vorious type of information for a given sheaf F can be obtained|
from hnwvlea\lge of a given resolution. Besides, fesolution can be useqd
M computing cohom °4Y demongirated next section.

CExp] Let X be a differentiable mf of real cimension m and let Sx be the
sheaf of real-valued differential form. Wel prove

0I>R->Ex D erd.. &R —0
ic a esolution of sheaf R,

Fact: Dn o star-shaped domain U in R", if fe £7(U) with df =% then
therg. exists ’UEEN(U)(ppa) s.t, oy =f_

For MJ x€X, find a stotr-Shapcd domain (/) 0‘f %. Consider sep
0= RW) =R LB £5U) Ls L)L .- —Eh(u) >0

It's exact at EfCv), p31. By fact, kerdcImd . Byo'e,
kerd 2Imd. So kerd:=1m d.

I¢s exact at S0W). Ris £2)= Cy, ) D> 3 (U)= {28 dx; |

£iec™) }
’Felﬁfd () df:)i:?a?fi dx; =0 & g',%z'o on U & :HU €ER /s a. comst map
& felmi Hemce it's exact.
All in all, *he saquen passing stalks are also exact.

[Exp] X is a topo mf and & is an abelian grp. We want o derive
& resolution for the Constont sheaf of G over x.

Dencte SV, 2) the ab&lian 3"P of in‘iarals?ndulqr chains of alggree
P imU,ie, SHKHL2)={ zainileez,ni.p’'—»U5 -

Denote  SP(Ui§ ) =Homy (Setu, 2) ,4) which is the group of singular



cochains n U with coefficients in G. Let § denote +he coboundary
pperator, $ : P(U,G)— sP'(V.4).

Let 5°(@) be the sheaf over X generated By the presheaf

U 87U, 6) with induced differantiol mapping &)= S (&)
[How to induce this mapp:ng? Rephrase our quesiion is alwty:;'c wefu{.
gp(.)g)/ S"*'[./&) are pesheayes. We've Rnow §:8°-,6) = ™, &) given
l:ﬂ Cobounday m“PF"'l? Su:8°U, ) — S‘P“(U, &) . We want to induce
@ &heaf map 5:8%-,6) — S*'(—, ) . Herere deiailed steps:

@ Induce mapping between stalks Sy: S ‘;t, &) — S &)

® Induce Mappg'vg between éEtald Spate  § - SP(—, G)-> SM(-,4)

' ‘ o X gn(")
® Indue mapping betwean sections §: I -, Sr., 4)) —s I'(-, 5’*'1-,@

Conside,r +he unit bd" U n Euclidean syace. % a!g fopa)
we‘ve Computed H"‘IU;G)"-fOG :;; . That means the s¢q

06 B3R5 - > $MuE) £'8°0,6) £53°(10,6) = -

is exact . . Hente il’s exact pass:nj <o
ony % in U, So the seq . N
0— G — S°G) 25 S'4) 2.S16) — - =S (&) -
e u tesolution of const sheaf &, which we abbreviate by

0— G- S (G,
We could also comsider C* chains and sinm‘lag obtain a tesolution

026> 526G). (06— $2(6)— -~ > SJe)— )

LExpl X is a complex m.] of complex dimension n. Let £ be the
sheaaf of (9,0) forms o X. Consider the sequence of sheaves

o which >0 fixed :
0 —0f ghe2, shi S,. P L0
where N’ is defined as the kernel sheaf rf' the mapping s’—%?:. gh2

kornel sheaf QP is the subsheaf of €™, hene 2° is the sheof
of holomorphic olifferential forms of typPe (p,0), i.er PEQTV) has
the form ¢p: %.4 ®ydzt ; P eUNU)  For each p, we hawe a resolution



o{: QP : 0—‘9529—9 EP“* . The -proof use =0 and
Grothendick version of the Poincapé’ lamma o the 3- operator . Detaile
prof i Similay in -mey resolution o0—> R-= E£* . Stotement of
the Grothendick version of the Poincard’ lemma for the 5- cperator:
I o is a P,Q) -form Oefmed m a polydisc A in C" where

A= {2[ 12;|< T, i=1)">ﬂ}, and 3w =0 In 4, Tthen there ex':sf.c

o 6p,0-1)- form u oefined in a slighfg smaller rofydisc d'cca
to that 3=w in a’.

[Exp] X is a complex m.f. . nPis the kernel sheaf of shaf mapping
gho 35 gP1 (onsuler sheaf sequence

0 — 6__7 Sza_aéﬁ —_— -a—?n” — O

We claim it's a tesolution a'r € without ffbo]L (=]

[Def] Let £ ond T* be differentia| sheaves, Then a  homo murphism
{:2*—>m* is « sequence of holomorphism {,..-,(_5-, m? which
commutes with the differentials of £ and m* .

A holomorphism  of fesolution of sheaves is o homomerphism
of the uvwler{,:vg diffeventia| sheaves.

p—> A —> A"

J 4

0>B — B
(Expl X is & tif{erentioble m.{. and [€F
0>R—> &" p— R—> Sw(R) be the resolutions
of R given by previous examples. Defme T:E* — S*(R)

by setting Ty :E%(U)— Sx(u,IR)
p —— Iyle) which is Jule)(c)= ]; e



It induces @« map of «resolutions

o> R 2> &
) |1
b— R— S (R)

To shew it's o komvmvfphicm/ we an-ly need tv show the
d.’ajya.m Commuftes,

o_)[R—)E, —_ - —)EP—)grﬂ-—D
id @ | | ® |
0— R— 82— - = SAR M)
For @3 [’g;'&_]’

T TR:,;I—U-)) ey, 'E )_ﬁ

‘\\s (U,R)= Hom(S(U(R), R) nw;-[&—aSceJ

Cc—1) —

For ® /-

we SNy —ssMcyy 4¢P

Eeken

L Satur) 2> $%ur)
Yelo—s feo] — s+ —— Lo de]
Q

£y [c):"f[ac,

=Ja
ones j\d

So 87}{0—9 ch‘o:l

pa

CProp] Suppse pe £ U) for Uopen in C"avol d® =0. Then for any point
peU, there is a n.b.h.N of  and & differential form 3y e tn)

St 29Y=¢ in N,

?fe kej' appliation af Poincaré lemmas for the cperotors d, 3,and 3.

g;",, 2,, d, it s exact , se d@=o means there (s ue &

st. du=Cp , where +=291a is the total degnee of ©.



Wr'.te us= ufv')o_'_ oo o u‘&'-'a fh.” uu:(a*_é) u= u";’.r u"l,l_f oo

Bup du=@ which (s & (#,0)fo™ , hence We only haye these terms :

oluz au’"? + aut2. Since 5“""'9:30’"":0/ we can
u;PP"j 5 an d a 'Poin(‘are' l.mmas ) So ﬂa\e are -'+‘ /#._ & S;-'l q ~f

st. 2%, = UL and D =uPLY | Hemce, we have
p=du=2au""? +35u>*
=29% t+30%
= 99 (¥, - W)

Co homology 7heory

1n this Section we'll see how tesolytions can be used to tepresent

the cohoma/w groups of a space. In porticulay, we shal] see every sheaf
admits o conomical resolution With Certain nice C(ohom,(vicq[) properties,

(Fact] For a short exact Sequence af sheaves over X
»—>A—B — C—0
Take its value at X ,we have & S@uence
0 — Aly) —.B(x) — C(x) —©0
This sequence s exact at WUx) and B(X) but net
Necessari y at C(x).
(Exp] X is & convected Hausdorff space, let a b eX andash,

2 is the congtont sheaf of c'nieJers on X avol T dlenote the
subsheaf of 2 vanishing at « ond b We have exact seg

0—=>73 22— 2/ —>°. (ongider sequence

0Tt = 2% — Z/.T|f><)—90
I

Ty, Z):= 5% 2) I(x, ﬁf)::j"(x, 2/7)

vfeS(% 2), m=fk). VYJET(*.2/7), §(® may not equal to gh)
So 20— 2/7(x) 15 not swry.

Cohomology gives & measure to the amount of inexactness eof
the sequence at CIX).



[Construction] Let T be a sheaf over a space X and let S

be o closed Subset of X. Define
F(s) := lim F)
Weve shown the sheaf mor T?Dfﬁ's — F=1" T) s on iso.

Hence F(s) Can be idlentified with §¥(g, £)=1"(S, n's)=: Fls)
wheve T:F-»>x is the étald map. For simplicity, we denote
Fis) by (s, 7). (=]

Note that: @ for any S € F(S) , there exiSts cpen set U2 S, and
exists £ eF(V)=T(U,FI,) st “,S 2§, (Proverty of divect Umtj

3 § ) — F(v)

v\ [/

, 3

3 Feor Mj SGI(S))-H,.ue exists am open wverc:tj
U3 ot S and s e TCL;) , st Silgay,; = Slsay

Indeed, we pick open as s.t. there exists fe Fu)
with f|5=s|s - We dgcomposc U to a union vf

open sets {U:} . Let fly; oenoted bﬂ Si .

go we kﬂ\’ﬁ g"$/\(); = {IUFI\S = SIU;{)S o |
O suys fhat we can extend @ Says that we can decompose seF(S)
L').--\ $€ F(S) To a secCtion under on open w\l&ﬁ’y

@:om on opense,tu -
o U{s,@ﬁt“ul S‘IU|(|$ - Slun$

From row on, we ‘re dealitly with sheaves of ab 4P oer a

paracompact Hausdnrﬁc space X ._[.or simplici U

[Def) A sheaf F over & Space X is soft if for oy closed Scx

the fesiriction WMepping  F(x) — F(6) is surf, i-e., any
section of = over S can be extended to a eection of F over x.



CRmkITts a kind of lifting property.

[Thm] Lf A is & soft sheaf and
0— AL B —0
is @ chort exact seq of sheaves, then the induced s¢q
0— A(x)i’%»ﬁ(x)—h"a C(x)— 0
1S exdclt.
pl: We only need 4o show its exact at CCX).
& Given cellX), we need to find it's preimage under b
in B(X).
* Find fbids on Ju;} in B(X).  Since sheaf seg s exact,
S0 for any xe X, we hwve hxi By —> Cx s Swij.

Hence , 3L eB, 1. hol= Ti‘c e Cx. Be9 prop af
direCt lmit, 3 Uopen ond beBtu) S4. TLb=leBs.
Consider the cormmuiative 0“%97’0!’":

b chw’%ccu) Cly S0 hobo ¢l
o vO= y .

o [ ]
JI l / Thmfa'm we Con fingl an open

L, "B"—h”’ c’f cover of X §U;3 cnof b; €_Bcu;)
\97;(5 S.t. hu;bi = Uy- | |

*Show b} can be pieced to a global section.
Since X is paracompact, 3 locally finite refivement fSi3of § U:¢
s.t. Si are closed set,¥i. Censider the following set
P={Cb,$1 5= 5, beB(S), hthy=cis §
P is partially ordered by ¢b,s)sCb’,s) if s8'and &ls =b.
By Axiom s, of the Sheaf , every linea:lj ordered chain has

& maximal element by glueing. Hence b\y Zorn's lemma,
there exiets o maximal set S and & section bEBCS) st
hb)=clg . I+ remains +o Show S=X. Suppose on the cowlmg
thay there ewists $;€§Si3 1 S &S, If 5;015=¢&, then

we have b'GﬂCSUS:i) bj setting b= %bi’ 'xeSS ’ (/¢ar!j
° xe ]
J

h(b)‘su% < C‘SUS& smeg l\(ﬁ's = C'S a"d hl‘g)lsi; C,Sj. So S is not max,



honce S; (1S £&. Since Milsag; = Clsas; = hblsas; , We have h(b-bj)=heb)-hib)
=0 on S;NS. By eanctress at  UALsNS;) 2.8(ensy) A Clss;) , there
existS e A(SNS;) st gl =b-bj- Since A is Soft, we extend
b to & Ylobal section &- Define BeBISUS;) by
T= { b on §
b;t9@@) on 5

Since h&)= d;usj, S is ot max. We complete -the -praof |

[Def] A Shetbf of abelian 3(?.5 F over a paraamp «ct Hausclorff

space X is fine if for any leally fivite open cover Ui} of X,
there exists a fomily of gheaf mors

12 - F?
s.+, (&) 27{; <4
by . ( F,)=0 for all x in Some nb.h. a'f the  (omplement

of Ui
The {'am'lly 0} is called a partition of unity of subordinate
to the covering TU:}. o
[Rmk ] )\ UYL

We “equire W be n.b.h.of

U, st. it's idemtically zero on (1
ond o n.b.h. of BV .

i Ui v YaeW Ni(Fi)=0.

(=]
CExPI Since partition of uni:y Subordinate +o 4ny open Cover s
exist, so we have following fine sheaves:

4. Cx or X a 'Pafa ovmpacf HﬁﬂSdef 5pa(g is a tine sheaf.
2. Zy {-;"or ¥ & paracompact differentiable mf. af

3, ok Lir X o parrlompact almost—complex mf. .
L. Axl.oioly fmepsmaf Ifae,‘-module,: , where X s a diffvmtmblg
mf. (5=4)

S. If R is o Tine .Sheafaf rings with unit, then any module over
Ris o {ine shef. 7
[prop] Fine sheaves are soft
pf: Let T be a fine cheaf ower X ond Sdsomx, se F(S). By dtef
of Soft, we wt.s, the section & can be extended to a section over X
We hope to Comstruct a section over X by glueing rections oy
open Covering of X.



There is an open covering fU;3 of S and sectiond s e¥u)
.t S;lsnui=913(\ui . Jet (o = X"S ond $,=0, 8o

that U3 Uo S on open Coves ing df X. Since X is
paracompact, we can assume 1U:3 is locally finite. Hemer,
by F sof4, we hove @ partition of unity U : & — % § suboydlinate
to fu:3. Consder M)y, : Flu) — F(U:) , we have (0,60 P
Since ('Ti)ui(s,-) In.b.h_wo( NELY So ('1;)0;(5;) (o be extend

to @ sectim over X, ie., ('I;)u;(S:)GI[X).

Defne 3=i24('7i)u, (s:) e'{:(y) , we'll show its a section extended
by SeF(S), e, Check 3'; =8
S;(0):S(0)

For weS . Twe T (), o)z Z Wuls) @2 Z), &)
3 SO,

(dtso] us:0 )1

LExp] X be the complex and let U =Ux be the cheaf of holomerphic
LFunctions on X. let g:fiz21¢ %!  let fay=Szmon &. It
cannot be extended to X. Se O is net Seft and hence not fine.

LExp] Constant sheaf is not seft and hence not fme. let § be
onstont sheaf ovey X and let gbex with axp.
Define s €& (fa,b]) by setting Sw=0 anol s@) % o.

There doesnt exist fe &(X)=g st Flo,y; =5, e, Fla=oz ),
wich is impossible, beause f is & fix element in &. Hence

G S nob Spft ond thue not fma.

[Pp] For exact seg 0»A—2B—>C —0 is exact
with A, B soft, then C s seft.
of: Fix a closed et S EX. Since A (s soft. we have the

sef 0—A(S)—B(8)D esr—o
Tex 143 /M: exact at C(S)ound CK)

° = Ax) — B(¥ A gcx)—-m
3
For ony se C(S) , JweS) St Lur=S. Since B is soft,



there exists t€B(X) with xS (t)=w . Comsider g, by

Commutnfivity, £Xgq-g . So we fud suiteble .5 € Cix) as
an extension of s.

[‘pn’P'] 1f 0—45,-4—')9.5"93:.:&)“' is an exact Sequence of
soft sheaves ,then the induced section Seguence
0—> So(X) — S.(X)— -
is also exact.
Pt: Let 4K; = ker(Si — Sir,) . We have chort exact seguences
0—> R 3; Jiy Riw —0
k&\t’: Induction.

=1 0—7 'K.zﬂso"’s., - —gl i’ Ha —0 exact .
With S, ,S, soft, we have R, soft.

Suppose R. (s soft. For exact 2@ 0 Ri—> S — Ri,—0
With R;, S; soft, we haw Rin soft. Hence K soft fioralm.
Since R is soft, we have short exact 3egs

o—~RK;(X) —'L‘) S:(x) ;‘L’Rm (X) -0

Then we have « Cvl:lj exact seq by splicing thoes short exect sy

0 So(x) Si(x) Sa(x)
\,,ko(xt)l {’\lq< -F,\l v \F ,]1,

97" Kx) T K
[Construction] (Canonical soft resolution for any sheaf) Let S be a sheaf over
X and let § 75X be the &tald space associated to S.

Define a preshesf CUS)(V)={§:U—>F Inef=1y}. It's a sheaf

and called the sheaf of oliscontinous Sections af ,? over X.

Define sheaf wmapping ho : S — CB) by s Tel(v, 372))

where §:U— C%g) » xS he is injective, o we define

T8 =CUSY ¢ and CUSI=CUFUS)). By inductionwe defe

Tirg)= CHSH/FUE) ond CUSH=CUTF(S)) So we hae
0— S— CYS) — F(S) —o

: . : %Boih exact .
0— Fits)y— C(s) — FM(S)—o



Splicing them Tvgether , we obtain the lonj exact sef
0— $—=0C%S) — L¥S)— CUS) — --

We call it the canonical resolution of S and abbreviate by
0— S—> C%(s)
C°(s) is spf-t it Sis a sheaf, fo C¥S)- [”/'F"(S)) 3 so{-r- Singe
Fi(s) is a 5he4,f Hente 0— $-C*(S) is a soft resolution.

Next, we need to define the whomology grps of a space with coeflicients
in_a given sheof.

Let S be a shegf over X and consider its canoni cal saff.- resolution
023 — LY8) — CHUS)—
Take global section X we have a seq by taking (continous) sections

0— Iy, 8) — I'(x, ¢°(g))— I'(x, CY8)) — -

CRmk] One may feel confused about this notation.
I'ix, £):=T(xF) , £ix eUH):= TX, EXS)) .
Since S and C{S) are sheaves, we haye Y (-, C¥%s) = C&)~

and J°(-,S) = S .
[Rmk] If S is saft, thew we have exact S'f'r seq 0289 C%H > -
Hence by previous prperty, we have exact sceq

0= £(x,8) = ['(%, Q) ) — I'( )fu' CHUS)) — ~ ~» -
S0 CrEw CS)(x)

A

[0efl Let S be a sheaf overa space X and [et

HY(% 8):= HA(C*x,8)) where HYC%X,8)) is
the gth derived group of the cochain complex C*(x.S).
(o= C(x.$) = CIX,$) — )
The abelian groups Hi(x,S) are defived for 320 and are called
the sheaf cohomology §rovps of the Space X of de¢gree g and
with coefficient in S



[RmK] This abstract definition is useful to derive general
functorial properties of cohomology geps, and we have verious
other ways to do computations.

[Thm] Let X be a paracompact Hausdorff space. Then

(@) For cny sheaf S over X,
) Ho( ¥, S) =1(x,S) (=S(x))

@ If 8 is soft,then H(x,$)=0 for 850
b) For any sheaf mor J: A —B
there s, for each >0, a 9P homo

4. ) ho=hx : ACX) — B(X)
(2) hg is the identity mep if his the «’dmtity mep, 420
t?’@,Oh_, :(goh)g for all 20, if \9:,8—98 is a second
shea{ mor.
) For each Short exatt seq af Sheaves
0> A= B—=2C—y
+theve is « gvp homo
$2:HYx,0) — (%, A) frv320 st
() The induced Seq
0 — H°(x, A) >H’(Xx, B) —> H°(x,c)_'s: H'(X, A)~
S HI X A) = HI(x, B)— HE(X,C) 52 (X, ) —> -
iS eXact
2> A commutative diggram

0 —9JJ = ‘6—5 e —s O
J : : )
0 _"gA'—",/B'-—) e'—o indluces a commutative d«a\?rm :

ha : HA X, A) — Hx, B)

0—> Holi" ‘A)'—ﬁ HO(X/a)_’H%X) C)"’ H‘(Xr A)—> .-
d 4
0— H°(X, &) — HUX, B) = r(x.c)— H(x, A=

Df, ™ @) Consider fesolution 05— C18)= CYS)—>
Take seclions. weve known it’s exact at I'(x,S) and CUS)X=Cx3)

oqr(x,S)—%c’(x,S)—é;C"(x S) — -



H°(>(:$) = kerS"/o =ker§® = Im? -;J"lx, ;)
exact ot exact at
C%x:S) $S(x,$)

@)(2) S is col, so the canonical resolution of soft s/m/ s
an exact seq a‘f S'af‘f Sheaves 0— $— CUs)—~ CHs)— -

Hence l()j P7) we have 00— S'(X,$)— ClS)x) — CHS)(X) —»
is also eaact. Therefe HUXS)=0 {or 270,

XD, Note that or h: A—B, it induces na‘mml@ a coc hain
wmplex map h*: C*(A) — C™(B).

Recyll that CUANU)={§: V2T | nf=1vd be sheafpf discontinous
sections of § over X.

So we define h*:CYA) — CUB) by hYy:CUlANI) = CTBIV)
[E:u-a.l\' — u—»ﬁ]

xS x>
where SEA|Y) (he e

There is a injective Sheqf mor 1} = CUA) by fu:AV) =Ll ,
SH'.:"{:’{: . We view ] as Subshez/af CTA) and B

a subsheef of CUB) . Note that Ky[Alv)) € BLY)

so k induces c. mor Wi CUAYA — Cofﬂ)/ﬁ_ By definition,
CoUM[A=TFYA). Hence K: FLA) = FLB). Repeat above steps,
we have & mor K C°HA) — CTFUR) whick is, by
p{e/.'n:ﬁon, Wi Yl —s e4B). Then we have
/!4'. C?d)/? ‘M)’) C)i(‘g) /7'1/.3) ) which is, Iy ﬁ/&f/

W rya) — FB). Then Hh* CTFU)— CTres)

. Finally,we hove B:CTH —ELB), C R
Since HU%A)= HEC Y(A) , +hmbycn () are conclusions

in Hatcher’s aly. topo.

Gwgn 0> A— B—C —0, we have 0—>CN) = CTR) — CW)e
then (©) are conclusions in Hatcherss 4{7 +ope



[Rmk] These froperties tan be used as axioms for cohomology
theory , and One can -prove existence and uniguencss of a

cohvmolojj -Huog with thoeg axioms,

The fest part we wont +o focus on the Computation.

[bef) A fesolution of a Sheaf S over a space X

0— & — A*
is called acyclic if Hilx, Af)=0 for ¥ Q>0 and P20

LExp] By above thm, soft resolution of a sheaf agjclic.
Aaclic tesolution of sheaves give usome way of @mputing

+he t'ohomoltyj 3rps of a Shegf 1@ '{;llowt:? thm

CThm]( Abstract de Rhem thm) Let S be a sheaf over X and let
05— A* be a vesolution of £. Then ¢hee is a

natural homp ¥P:HP(i(x.4%) — HA(Xx,5),
Moreover, if ©0—> S— A" s ocgyclic, ¥P is an iso.

o ,
° CD"SWC"' YP: P‘P("-'(XJ(A*))'_9 '—l [xJ s)
Common —trick : Splc’ﬁnj 4 l’:‘f exoact seq fo Shkort exact sep.

0o A Ao S o Lot K= ker (AP—> A )=Tm( A, 4

P
Then we have short exact s o— K% A" 2 kF'— o,

With S.E.S., we have LES. :
o- H(x,%")— H°(X, (AH)-—a H'(x,q<P) —g—?H'(X;'kw)~>

Wi*h vesolytion 0~ S- uﬁ*, we have

HP (L%, A%) = ker(S(x, A7) = T(%,A"™))
Im(L(%A™) = 5 (x Ah)
(X, &Py
Im(I(x,A™) = 3 (x Ah)




CU"S;JGY‘ 6’ in L.£-S. So= He.fx)’kl’) "*H'(X,(kr‘“)
I x,Kkb)

I+ induces 2. HP (T (x, A*)) — H'(X,%P")
(Toad /.

1{' the vesolution is acij’ic, H'(X. .AP-') 2o, So in L2.S. §°%is
P-r+i

Similarly, consider exact seq 0—> KPr Y- Kk —0

we obtain Y.,Pf HY7( ¥, ’kp'r") — RH"( X, K"y (iso when Ac‘yclib)

We d&['me Yo =XPo Yo o ol (P AM) = H"ﬂx,’k‘)
HP(%, S)

which is iso when resolution /s acyc/ic.
7

[Rmk] In the proof we only use cahamhv] axiom and oo Mot use shedf
properiy. Thal's an evidence for axoms are cowmplement.

[Coro] Suppose 0— S — A¥
\l,{' 1'9 iS a homo Of resolutions qe sheaves.
0 72"
Then there is an  jnduced homo HCex, 4% ) 2B HA(IP( x. BY))
which is, moreover , an isomorphism c’j- f is an iso of sheaves and
the fesolutions are bo th acyclic.

PE Gince WLTIX,-)) = HP(X. ) is nabyral , we hase

. ? P
commutative diagroum HPCS (%, A% ) X, H'(x, $) .,
fo LFp (9P ¢s induced)

Jop
HP(IT (X, B%)) ;’—) HP(x, S)
Y ]
When f is to, fp is iso. agran,

?Cﬂh ute$ " .
When fesolutions acgclic/ ¥, and yP aye iso. Jp 18 ise,

P =

[Lemma] Let R bea soff shea{ of r::j ano| 77) (S & S'heaf o{
R-modules, Then 27 is a soft sheaf.



‘P‘f: Assume Kk a closed subset o? X. let sem(k).dopen U2k

ond EemU) st #<S =S, Let pel'(kUc-uyR)
by setfing (05{:- :: )':-U . Since R s s,{f, thee exists

pe (X, R) with fk’f'(‘_u)p' =@. W is asheaf o‘f' A- rudide |

So P-SEMX). 42X p5 = p-tX3 :Psz S.
Pzl on k

Y
0 tne
7 0x) By “empemmas

| 9 [T e e
mk)—==> oy

[Tam] (e Rham) Loy x be o dlifferentiable mf. Then the natural
Mapping T :HP(L'00) — HP( $E(x, R)) induced by £ — SI(xR)

Y —— J'cq

is an (S0,

PF: Congider resolutions of IR in one of our examples.
Claim: £ and S5 oare bovh soft.

: 3
R 1/76 Lf the claim is true, we haye o
0 IR N o p ,,,
1ty S, HPC e%x)) — HPCSW(X, R ) by
above Corollwa.

. €% is fine, 0 €° is Seft.

o Show 8% s so{t. By cup product, we -fmd that S iS an
§%- module. Claim: Sa is soft- If this claim i true, s*
is Soft as o module of saff gheaf. Then we show S5 is soft:
Se (V=S wRIT is ¢} ={f:v>RIF 73 = Co(U,IR) .

Go Se I8 Sd{"l'.
|



LThm]( Dolbeault) Let X pe a complex mf, “Then
Wi on = ker(EMin Bse™iix)
Im(ghtx) 3 ,sP2(x)

of: Consider +he Tesolution of soft sheaves:
0—0f s gu’,o_s_,g?,i_'é_} s P
Then lfj abstract de Rham thm, we howe

Hi(x,9f) = H(S(x, €7%))
- ker ( aP,Q.(x) =, 2?19"'()())

Im(£P¥'(x)_3_, gP? (X))

0

Next, we let bundles pby a 1ole in de Rham thm .

[Def] Let ) and 77 be sheaves of modules over a cheaf of
commutative ringS RB. Llet 1»@,7 denote the sheaf

Jonerated by presheaf U—2(0)8, P) oand we call sheaf
M &N the tensor product of m and 7.

CRmk ] —Pne.sheaf U278 77 is not a @hea,f. We provide
a omtraexovvple here. Let £—X be o holomonphic vettor
bundle with no nontrivial global holomowhic Sections.

we have sheaf (I(E) "U OE) (V) ={all holo sections of E over U}
We have Sheaf S @ grp) =1l clifforential fonctions on U3

OE) and & are sheaves of (- module where U is the
structure shead Setting by (O(V) =§all holo funs on U/



Let §U.;f be the Sets a{ trivial izmg Cover of X . We have

(Om8,€) (x) = VENX) By, ELX) =0 (since there e no
vontrivial global olomovphic sections, OE)(X) =o. )

On the other side, (O(E) &y €) (Us) = VEXU; )@mj,é“{;') =
ZCE)(UJ') %0 . Thus we have vontrivial patch of sections,
if UE) eyt is « Sheaf we can glue patches of nontrivial

sections to obtmin a global nontriviel section, but we fid
there are no Global nontrivial Sectim since (£9(E) O E)(x)=0.

Hence it's not o sheaf. (we define AE)®, & the peshenf here)

LProp (778,%), = 775 &, T
pf: Deaole H +he Pregunf U— Mgy, "1V .

Sheadifi cation oloesn't chonge stalks, S (’ﬂ&7}z=‘ Ha
Hence it suffices do shw H, - m, 2,. .

Bj ooncrele  construction af’ STalks) Ha= 1l H) /N
= { LCu, ‘F)J) U openin X, £ € HW)=mw) @ﬁe(wWU)}

=1L, S0, wov)l[UEX, & eRw), wiemw), viepw)3

Lvan) e R,
Lv,uy)] €My }
ope Lcu,vnle 7,

= U, S.0: U: OV U_.)(,aié’,}?(
{[( > 20; U Q‘V.)]) u;em(u),v.-c-)/%) f

M= G, 1, 2{;[(“’ )] [(Uiu")J 6 [Cu,vi]

Lol

= Hx . o



Clemma] T{ 7 isa locoly {ree sheaf of R-modules andl
90— A'— A—->A"—0 s a short zxact s&q Of
R - modules , +hen
0->2'0,7 5 AGT > AT —0
is also exact.
’h‘f - FOY any xec X ,
02 (N %eT)n=Ne 8T — AT, —Mr§Trs0

(s exact, Site eract sof tensor free module is also
exact by bmsic &bcbn. =

Reaall that there s & fesolution of vhenves of 7 ~-modules
over a (omplex mf. X:
1— OfF— gP°25, g1 5, .. P>y

It X admits 4 holomorphic burdlle £, we hew sheuf ()
Weve proed O(E) is loeslly free in the thm i"u,g-rycdbg
coyYvesponclence 0’f S ~bundles and Laca{/y free S —secstions
Exact seq densor lowzlly free shenf is olco exact, i-e

0—F 8,0 — &7 &, 0E) 25 ... 227" 8, () >0

1S an exact seq.

[Prop] ©°®y VIE) =I(N°T*(X) 8 E)
f: We shoud use two facis:1E,F be bupdles over mf M . I be
section sheaf, we hove §(EpF) -.-J"(E)%.m.)f(F) ,more

Dh"l'a”, 5 . https://math.stackexchange.com/questions/1857939/sections-of-
tensor-bundle-are-tensor-product-of-sections

2. Recall thay € =icer (E*°SEPY) , actually its the shaaf of
holomorphic differantial forms of type cp.0), e, in Gal coord,
@e W) iff Py @rdf, 9 eU). Se = PINTHX) .



With those facts, we have ((A°T*(x) ® F)= U(A'T*[XJ)@,,,&(E)
EQP @@ O (E) .

Lpropy X @LU(E) = E(A" T*(X)BE )
PE: A" T*(k) 8. E)= SA* 2 T*x)) @, £(E)
= £(APR T') 8,00
= Mo UE)

(Rmk3IIn"A ®, 0 “ A,0 ave ¢ -modules.

PPl (E)B,E = E(£)
EE): E(k)gE = UEI®,E

Coef] (X, NTT(X)&E) is callea the Cglobal) holomorphic
p-forms on X with coefficients in £, denoted by Q°(*,E)
We devote the sheaf of holo morplt‘c. P- forms with coefficionts
n E P] ﬂ'le). let S"Q(X,E) ;= SCX, AP T*™X) & E) Pbe
the oliffere_m-uablc (-P,Q.)-—fb'rms om X with Coeffc’a'en-r.s nE.

[Rmk] QP(%E)= O(X, NT*(x)8.E) = UINTW&E) (x)

2% ()/f) memns (9-sections sheaf \fgu).;d
S = U(NT™)e,0
Sheaf ‘::-m;q This is the ) - & =

sheaffication of ?m%w_. = Pe,0E)(x)
VU—n"tne
o) ¥ ftx) @) E) (X
Co ﬂpr).:_QP%UE) . v J
Similarly  €*(x,£)= g”(e)00) = "G (E) (x)
Sheof  volued

e®e)= PR i) = x



Then the ng exact seq Con be wni-hm &S
00" (g) — £7%)—> ™ (£)2 . 2% st o

where 3 —=3Se@1. Its exact and 2”'3(5)amzf.ne
gheavqg) so Wwe haw {allow'.v gemmlizmm a'f Dol beau lt% thm

[Thw] C Dol beault’s +hm) Let % be a complex m.{. and (et £— % be

a  holomorphic vector bundle. Then
HE (% n'g) = ker (£P3(x,2) 2% €7 (x,8))
Im(gh'(x,5)—c%i(x, &)

P,9+1

Cech cohamoquq with coefficiemts in a shent

This section has similar Drvcess Qs in dcfm«y &) ular
hvmalw

Let X be a topo spoce , F be a sheaf of ab gps n X.
let 2 be a caver-‘vg of X lw open seits.

Coefl (2~ Simplex)e A O-simplex o (s an ordered collection
of G« seits af the covercy 7/ Wtfh Vltmampd ‘ntersection,
we,, & =(Uo, - U,)w«ih (\ U: £ &.

oWe all the set n U; =:lel the suppeort of the simplex o-.

e A q- cochain Of U with Coeffcc«em‘s in ,f ‘s a mapplrg

f which associgtes to eath a—-Smplex « a f6)€ Z(lo) .
elet CHU,F) denote the set of 2-cochains, which s a

bebelian grp.
¢ Define coboundary operator §: Cu,#) — Cg”[ul 7 )
by dio) = éc-u)‘-r,:?l fles) where feciu, 7),

=(u,,---,fi;, 5 Uyq,) and f,:"' is the cheaf Testriction .

CProp] 2. § is a grp humo
2. §=o0
3. We have cochain complex
CHu) 8) = [ClLt,$) = - — 1L, 8) = C 1, 8) = T



[Def] Co horn.olz” rf cochain comztolex C(u.S) s the Céch
Cahamalog_y. 247, 8)=ker$ , BPi(w,S8):=1Imé , and
Y W, $) := HE(C*L, 8)) = 2HW,$) /8% 1, L)

cprop1f M is a refinement of 1L, then there is a notural
Gp hemo yU . by, ¢y — Hifm.g) and

km Y2, $) = HY(X,S) |+ We can 1epresent H¥*(x,8) 6
Ty Cech Coh::?ol Y . Y
LProplIf 1 s & vaarir_t.? o.t. Hi( (o), 8)=° for 33| and

ol simplices o inll, then H2x 8) =H (1, 6) for al
a3e cnd we cll U« Levay Cover.

Lpropl If X is paracompact, U is lo()l_lj finite coverimg,
omol S is a fine sheaf over X, then H U, S)=0 for >0




