Sheaf theory Ref: Gtm 65.
Big picture: Sheaf theory is a method to obtain global information
from local information.
Motivation: Most problems can be solved without sheaf theory. But without
cheaf theory makes things hard to comprehence.
presheaves and sheaves
[Def] A presheaf F over a topological space X is
(a) An assignment to each nonempty open set UCX of a set F(u) with
elements called sections.
(b) A collection of mappings(called restriction homomorphisms)

$$dY: F(U) \rightarrow F(V)$$

for each pair of open sets U and V St. VCU satisfying
(b) $dY = idu$ (a) For UDVDV, $dY = dY = dY$
[Def] (non. d presheaves) Let 7, G be two presheaves over X.
A morphism h: $F \rightarrow G$ is a collection of maps
 $h_U: F(U) \rightarrow G(U)$
for each open set U in X s.t. the following diagram commutes
 $T(U) \rightarrow G(U)$
 $dY = \int dV$
 T is said to be a subpresheaf of G if the maps hu above
are inclusions.
IRmk] Roughly speaking, presheaf over X has three layers.
third layer Hom($H(U, F(U)$) Hom sets between $H(U)$ and $T(V)$
First layer U V open sets in X

Hom
$$(F(U), F(V)) = \begin{cases} id_U & U=V \\ *V & U \geq V \\ \# & 0/W \end{pmatrix}$$
 when $U \equiv V$ and U sheaf of functions, contains inclusion

ve consider Hom (F(U), FMI ms.

1

Then mors of presheaves should preserve this 3 layers. F,G be two presheaves over X. A mor $h: F \rightarrow G$ is assign each element an element in the same layer compatitively.

third layer
$$Hom(\mathfrak{P}(U),\mathfrak{P}(V)) \rightarrow Hom(G(U),G(V))$$

second layer $h_U: \mathcal{T}(U) \longrightarrow G(V)$

First layer $U \longrightarrow V$

* Actually, I belive presheaf over X is a 2-cat and morsone 2-functors. (to check it's a 2-cat is so awful and seems not very useful at this stage, so it's just a guess. But it's easy to prove the second and third layer combine satisfying conditions to form a 1-cat).

I think this "category version" or just "layer version can explicity show what data presheaves contain.

[Rmk] When we endow more structure to T(U), e.g. T(U) is a group, all mors in def should be grp homo.

[Def] A presheaf \mp is called a sheaf if for every collection U; of open subsets of X with U=UV; then \mp satisfies Axiom S₁: If $s,t \in \mp(U)$ with $\forall_{U_i}^U(s) = \forall_{U_i}^U(t)$ then s = t. Axiom S₂: If $s_i \in \mp(U_i)$ and for $U_i \cap U_j \neq \phi$ we have $\uparrow_{U_i \cap U_j}^U(s_i) = \uparrow_{U_i \cap U_j}^U(s_j)$, for Vijj

then there exists an set(U) s.t. tu; (s)=S; for Ui.

[Rmk] For "good" patches of local functions, we can glue them to a global one. Axiom Sz Convices existence and Axiom S, convinces uniqueness. [Rmk] mors of sheaves are the same as mors of presheaves. [Exp] (presheaf and not a sheaf) X = fa, b? with discrete topo. F(a) = F(b) = 1K. and restrictions are all zero. Then it violates Axiom S1. Then what's the case on m.f.? What's presheaves on m.f.? I dea: S-structure tells you what's S-functions on M. MK (manifold) Construct sheaves of S-functions. P Let S = differentiable E, real-analytic A, or complex-analytic O. C[®] functions teal-analytic functions holomorphic functions [Def] (S-structure) An S-structure Sn on a K-manifold M is a family of k-valued continuus functions defined on the open sets of M s.t. (1) YPEM, ∃ open n.b.h. Upp and a homeo U→U'⊆K" s.t. Voren VCU, f:V→K∈Sm iff f·h': h(V)→K∈S(h(V)) (2) If f:U >K where U=UV; and U; open in M, then $f \in S_m$ iff $f|_{U_i} \in S_m$. (e.g. $U = \bigcup U_p$, U_p is open n.b.h. of p then (M, S_m) is a S-manifold. We can use (2) in def) $[Def] C_{x}(U) := \text{ cont: functions } x \rightarrow k, \text{ it's a sheaf of } X.$ [Def](Structure sheaf of the m.f.) Let X be a S-monifold. Sx(U) := the S-functions on U. defines a subsheaf of Cx Ex, Ax, Ox are sheaves of differentiable, real-analytic and holomorphic functions on a mf X. [Rmk] One may think S-structure is just a sheaf. That's wrong. S-structure just tells you what's S-function on the m.f. . S-structure is an instruction book, then we call tell sheaf of S-functions on S-manifold M, which is so called sheaf structure.

Presheaf of modules occur very often in the world of m.f. We'll see tight relationship between sheaf of modules and S-bundles.

DefJ R is a presheaf of commutative ring and TTI is a presheaf of abelian groups, both over a topo space X. We say TTI is a presheaf of R-modules if

(1) For each open U⊆X, TN(U) is a FL(U) - module.
 (2) For each V⊆^{pen} U⊆X, ∀d∈R(U)

$$\begin{array}{c} \mathcal{M}(U) & \xrightarrow{d \circ -} \mathcal{M}(U) \\ \mathcal{M}_{mv} & \mathcal{D} & \downarrow \mathcal{M}_{mv} \\ \mathcal{M}(V) & \mathcal{D} & \downarrow \mathcal{M}(V) \\ \mathcal{M}(V) & \xrightarrow{\mathcal{D}_{v} \vee (a) \circ -} \mathcal{M}(V) \end{array}$$

(compatibleness of module structure and restriction in sheaf structure)

If M is a sheaf, then we say M is a sheaf of R-modules.

[Rmk]

[Exp] Let $E \rightarrow X$ be an S-bundle. Define a presheaf S(E) by setting S(E)(U) = S(U, E), sections of E over U for $U \stackrel{\text{Open}}{=} X$, together with natural restrictions. S(E) is called the sheaf of S-sections of the vector bundle E. S(E) is a sheaf of S_X -modules for an S-bundle $E \rightarrow X$. For example, we have sheaves of differential forms E_X^* on a differentiable m.f., or the sheaf of differential forms of type (P, Σ) , $E_X^{P, \Omega}$ on a complex m.f. X. $[Exp] Let \mathcal{O}_{\mathbb{C}} denote the sheaf of hold functions in <math>\mathbb{C}$. Let T denote the sheaf by setting $\{ T(v) = \mathcal{O}_{\mathbb{C}}(v) \ if \ 0 \notin U \ T(v) = \{ f \in \mathcal{O}_{\mathbb{C}}(v) \ | \ f(o) = o \} \ if \ 0 \in U \ \}$

T is a sheaf of \mathcal{O}_{α} -modules.

[Def] Let X be a complex m.f. with structure sheaf Ox. Then a sheaf of Ox-modules is called an analytic sheaf. [Rmk] we introduce analytic sheaf because it ocurrs frequently. The rest of this part we focus on the relationship between bundles and sheaves. Just as in algebraic geometry, we hope to find a correspondence between {bundles over X} and {sheaves over X}. Clearly, to make correspondence holds, we need put testrictions on bundles and sheaves, i.e., the guestion is to find ???" in the following and prove the bijection

{?? bundles over χ } \rightleftharpoons ?? sheaves over χ } [Def] Let \mathcal{R} be a sheaf of commutative rings over a topological space χ . (a) Define \mathcal{R}^{P} , for $p \ge 0$, by setting $\mathcal{R}^{P}(U) = \mathcal{R}(U) \bigoplus \cdots \bigoplus \mathcal{R}(U)$ and natural restriction. \mathcal{R}^{P} is a sheaf and we call \mathcal{R}^{P} the direct sum of \mathcal{R} . (p=0 corresponding to 0-module) (b) If \mathcal{M} is a sheaf of \mathcal{R} -modules s.t. $\mathcal{M} \cong \mathcal{R}^{P}$ for some $p \ge 0$ then \mathcal{M} is said to be a free sheaf of modules. (c) If \mathcal{M} is a sheaf of \mathcal{R} -modules s.t. each $x \in \chi$ has a n.bh. U s.t. \mathcal{M}_{U} is free, then \mathcal{M} is said to be locally free. [Rmk] \mathcal{M}_{U} is the restriction of sheaf \mathcal{M} , the def can be guessed easily and we left as an exercise.

[Exp] Let M be the locally free sheaf of S-module

where S is the structure sheaf of S - manifold (X, S). Then for each $x \in X$, $\exists a$ n.b.h. U of $z \, s.t. \, m|_{U} \cong (S|_{U})^{T}$. To unwrap the equation, for each open $V \subseteq U$, we have $m|_{U}(V) \cong (S|_{U})^{T}(V)$, i.e., $m(V) \cong S(V)^{T} = \{(g_{i}, ..., g_{r}) \mid g_{i} \in S(V)\}$ $= \{f: V \rightarrow K^{T} \mid write f: (g_{i} ..., g_{i}) \mid g_{i} \in S(V)\}$

Hence, locally free sheaf of S-module means for each $x \in X$ there exists a u.b.h. U_X of $x \in S$. $\mathcal{M}(U)$ are vector-valued function with each component a S-function.

[Thm] Let X = [X, S] be a connected S - m.f. There is a bijection Eiso classes of S-bundles over $X_i^2 \in \frac{1:1}{2}$, so classes of locally free sheaves for S - modules over $X_i^2 \in \frac{1:1}{2}$.

Pt: \Rightarrow Given a S-bundle $E \rightarrow X$, we need to construct a locally free sheaves of S-modules over X where S is the structure sheaf. We claim sheaf S(E) is the corresponding locally free sheaf of S-modules. It suffices to show SLE) is locally free. By local triviality of bundle E, for any $x \in X$ there exists a n.b.h. U of x, s.t. $E|_U \cong U \times k^r$. key: Pass this iso to sheef. Claim: $S(E)|_U \cong S(U \times k^r)$ indeed, for $\forall V$ open in U, we have $S(E)|_U(V) = S(E)(V) = S(V, E) = S(V, U \times k^r) = S(U \times k^r)(V)$ Thus $S(E)|_U = S(U \times k^r)$.

 $Claim: S(U \times K^{r}) \cong S_{U} \oplus \cdots \oplus S_{U}$

It suffices to show $S(U \times k^r)(V) \cong S[U \oplus \cdots \oplus S[U(V)]$ for any $V \cong U$. $S(U \times k^r)(V) = S(V, U \times k^r) = \{f: V \rightarrow V \times k^r | g: V \rightarrow k^r, write as \}$ $x \mapsto (x, g(n)) | (g_1, \dots, g_r), satisfying g; \in S(V)\}$

$$\begin{array}{cccc} \varsigma(U \times k^{r})(V) & \longleftrightarrow & \varsigma_{lv} \oplus \cdots \oplus \varsigma_{lv}(V) = & \varsigma(V)^{r} \\ & & f & \longmapsto & (g_{1}, \cdots, g_{r}) = g \\ & & & & \\ & & & & \\ & & & & & & \\ & & &$$

 $f: V \to V \times k^{r} \longleftarrow g$

It's clearly an iso.

∉ Given a locally free sheaf of \$-module L, we w.t. construct a \$-bundle over X.

Since L is locally free, we can find an open covering $\{v_a\}$ of x and a family of sheaf iso $g_a: L|_{U_a} \longrightarrow S^*|_{U_a}$ [Rmk] & doesn't depend on Ua since X is connected. Define $g_{dg}: S^*|_{U_a \cap U_B} \longrightarrow S^*|_{U_a \cap U_B}$ by $g_{ag} = g_a g_{g}^{-1}$. Since g_a, g_p are sheaf maps, g_{ap} is also a sheaf map. Sheaf map g_{ag} is a family of mors, one of them is $(g_{ag})_{U_a \cap U_B} : S^*|_{U_a \cap U_B}(V_a \cap U_B) \longrightarrow S^*|_{U_a \cap U_B}(V_a \cap U_B)^*$

Claim: The sheaf map $g_{a\beta}$ is equivalent to the map $g_{a\beta}: U_{a} \cap U_{\beta} \longrightarrow GL(t,k)$

Indeed, $S(U_a \cap U_\beta)^* = \{(g_1, \dots, g_r) | g_i \in S(U_a \cap U_\beta)\}$ is a vector of functions. We can also view it as a vector-valued map. $S(U_a \cap U_\beta)^* = \{f: U_a \cap U_\beta \rightarrow k^r \mid f(m) = (g_i(m), \dots, g_r(m)), g_i \in S(U_a \cap U_\beta)\}$. Hence, $(g_{a\beta})_{U_a \cap U_\beta} : S(U_a \cap U_\beta)^r \longrightarrow S(U_a \cap U_\beta)^r$ $[f: U_a \cap U_\beta \rightarrow k^r] \longmapsto [h: U_a \cap U_\beta \rightarrow k^r]$

i.e., $(g_{ab})_{Ua \cap U_{\beta}}$: $Ua \cap U_{\beta} \longrightarrow GL(r, k)$ $\approx i \longrightarrow g_{ab}(x)$ s.t. $h(x) = g_{ab}(a)f(x)$ Then $(g_{ab})_{V} = (g_{ab})_{Ua \cap V_{\beta}} V_{V}$. So $\exists a \mod g_{ab}: Ua \cap V_{\beta} \longrightarrow GL(r, k)$ equivalent to the original sheaf map g_{ab} .

Let $\widetilde{E} = \bigcup_{a} \sqrt{x} \sqrt{x}$ where n is $(x, x) n(x, g_{ab}(x)x)$, Uan UB = Q The trivialization of E is [Ua × Kr] ~ Ua × Kr. Since gap gap = gage gp gp gr = gage = gap are transition functions for vector bundle E.

The correspondence doesn't depend on representation of iso classes. Then let's check it's a bijection.

$$E \longmapsto S(E) \longmapsto \widetilde{E} = U U_{\lambda} \times k^{r} / (\alpha, \beta) \sim (\alpha, g_{\alpha\beta} \otimes \beta) \quad \text{where}$$

$$U_{\alpha} \text{ is the triviality of sheaf } S(E)$$

By construction, Uz is also the triviality of bundle E. Hence they're the same. $S(E) \mapsto \widetilde{E} \mapsto S(\widetilde{E})$ \downarrow which is also trivialization on U_4 of $S(\widetilde{E})$.

[Rmk] How bundles and locally free sheaf of S-module related? We only consider construction of a bundle from the sheaf. To construct a bundle, we need to glue { Ua × k3, , i.e., let E=11Ua×k/2 So we only need to consider how to glue, i.e., what's equivalence relation '~"? The following picture shows that to glue two trivialization Unxkr and Up xkr, we only need to assign each x E Un NUp an element in G(r, k), which is an automorphism on k^r .

for xeUanUp, it suffices to glue two fibers) kt to a fiber. It's equivalent to give an iso $k^r \rightarrow k^r$, then we can glue two $\xi \mapsto g_{ab} \xi$ fibers by (x,3)~(x, 9,43).

Jap: Ua (NUp -> GL(+, K) exactly plays this role. We'll end this part by introduce the generalization of locall

free sheaves. This generation can even be defined on complex m.f. with singularities — complex spaces. An analytic sheaf on a complex mf. X is said to be coherent if for each x EX there is a n.b.h. U of x s.t. there is an exact sequence of sheaves over U, $O^{P}|_{U} \rightarrow O^{2}|_{U} \rightarrow T|_{U} \rightarrow 0$ for some p and 9. More detailed can be see in Gathmann's algebraic geometry.

Resolutions of sheaves

Motivation: A sheaf on X is a carrier of Localized information about the space X. To get global information, we need to apply homological alg to sheaves. In this section we'll do the prework.

[Def] An étalé space over a topo space X is a topo space Y together with a continous surj mapping $\pi: Y \rightarrow X$ s.t. π is a local homeo. [Exp] (Relationship between bundles) let $\pi: E \rightarrow X$ be a bundle over X. Then surj map $\pi: E \rightarrow X$ locally is $\pi l_U: U \times k^r \rightarrow U$ is a homeo since k^r is contractible.

From the example, étalé space is a generalization of bundles. So we can also define sections for étale space.

[Def] A section of an étalé space $Y \xrightarrow{r} X$ over an open set USX is a continous map $f: U \rightarrow Y$ s.t. $\pi \circ f = i d_v$. The set of sections over U is denoted by $\Gamma(u, Y)$.

Question: Given a presheaf \mp over X, can we construct an étalé space $\widetilde{T} \longrightarrow X$ associated to \mp ? The answer is yes and we have: [Slogan] étalá space associated to presheaf is the union of stalks.

ERm k] The direct sum $F_x := \lim_{x \in U} F(U)$ means there are $\{F_x, t_w^U | U \ge x\}$, s.t $F(U) \xrightarrow{T_v} F(v)$ $f_x = f_x + v$ for any $x \in U, V$ and for each commutative $f_x = f_x + v$ (fu, fur are datas of $\lim_{x \to v}$) diagram $f(U) \xrightarrow{TV} F(V)$ there exists unique $g: F_x \rightarrow W$ s.t. the new diagram commutes $F(U) \xrightarrow{TU} F(V)$ $r_x \xrightarrow{T} F(V) \xrightarrow{TV} h_v$ $F_x \xrightarrow{3!} \rightarrow W$ [Rmk] If the structures are preserved by direct sum $\lim_{x \to V} \int_{x \to V} f_x$

in herent this structure. For instance, if F(U) is abelian group or commutative ring, then so is F_{x} for $x \in U$.

[Def] Consider clata of the direct sum $t_{\alpha}^{\vee}: \mathcal{F}(U) \longrightarrow \mathcal{F}_{\alpha}$. If $s \in \mathcal{F}(U)$, we call $s_{\alpha} := \mathcal{F}_{\alpha}^{\vee}(s)$ the germ of s at α and s is called a representative for the germ s_{α} .

ERMK] Presheaf v.s. Stalk v.s. Germ. 7 7* 5*

If we consider $\mathcal{T}(U)$ is a set of maps presheaf valued at U $F(U) \longrightarrow F_{\pi}$ stalk fu→target space } then we have : s ---- sx germ target space of each toint stalk Fx -representative for the germ If S(x) = S'(x) then $S_x = S'_x$.

[Construction] Let $\widehat{\tau} = \bigcup_{\substack{x \in X \\ x \in X}} \widehat{\tau}_x$, and let $\pi: \widehat{\tau} \to X$ by sending points in $\widehat{\tau}_x$ to x. To make $\widehat{\tau}$ an étalé space, all remains is to give $\widehat{\tau}$ a topology and check $\pi: \widehat{\tau} \to X$ is a local homeo.

For x EX, key: Endow topo of 7 by topo of X. consider open n.h.h. U of Fortunately, we can find a section so move S € Ŧ(U) I becally U to 7 and let the image in 7 be open.) s:u→7 The section is easily find when we draw the left picture. For $S \in \mathcal{F}(U)$ Sillin U Let $S: U \longrightarrow \widetilde{\mp}, z \mapsto Sz$. Stalks parametrized Since $\pi \circ \tilde{s}(x) = \pi (s_x) = x$, so $\pi \circ \tilde{s} = id$ meaning by points in UEX that S is a section, i.e., The is local bijection **S(U)**={S×1×∈U} In picture, it means bijective to minu

Let {S(U)|U[®]Eⁿx, s∈ ∓(U)} be a basis for the topo of ∓. Then Illims and its inverse s are both conti, making IL a local homeo. [Exp] If the presheat has algebraic properties preserved by direct limits, then the étalé space & inherits these props. For instance, suppose 7 is a presheaf of abelian grps. O Each stalk Fx is an ab grp. ③ Let 〒o 〒={(s,t)e fx 平 | n(s)=n(t) } [i.e., s,t lie in same stalk 开x) Define $\mu: \tilde{\tau} \circ \tilde{\tau} \longrightarrow \tilde{\tau}$, (Sx,tx) → Sx-tr. It's well-defined since Sx, tx \in Fx which is an ab grp. It is a contimap, indeed, for h \in F(U), h(U) is an open set in $\tilde{\mp}$. Since $h \in f(U)$ which is an ab grp, $\exists s, t$ in F(U) s.t. h = s - t. $\overline{h}(U) = \overline{s} - t(U) = \{(s - t)_x \mid x \in U\} = \{s_x - t_x \mid x \in U\}$ so the inverse µ"(ĥ(U))= {(sx, tx) |x∈U} ⊆ fo f, i.e., $\tilde{s}(U) \circ \tilde{t}(U) = \{(a,b) \in \tilde{s}(U) \times \tilde{t}(U) \mid \pi(a) = \pi_{db}\}$ $= \left\{ \left(s_{x}, t_{x} \right) \mid x \in U \right\} = \mathcal{M}^{-1} \left(\widetilde{h}(U) \right).$ so µ [h(V)) = S(U) = F(U) is open in ∓ = ∓. $\Im \Gamma(U, \tilde{\tau})$ is an ab grp under pointwise addition, i.e., for S.F EJ(U, F), (S-F)(x) = S(x) - t(x), Vx EU. Since s-f is given by compositions : し、「シーテーテーテーテー so s-f is conti. $\chi \mapsto (s_x, t_x) \mapsto s_x - t_x$

Then we want to do the invers — given an étalé space, we want to associate it a sheaf. The natural choice is $\mathcal{J}(-,\widetilde{\mp})$, the sheaf of sections of $\widehat{\mp}$.

[Def] Let F be a presheaf over a topo space X and let F be the sheaf of sections of the étalé space \tilde{T} associated with F. Then we call \tilde{T} is the sheaf generated by F.

[Rmk] Sheafication is take sheaf of sections of Etalé space. Étalé space is a good way pass from presheaf to sheaf. Question: What's relationship between F and \overline{F} ? Let's find more between them first. There is a presheaf mor $T: \mathcal{T} \longrightarrow \mathcal{T}$, with $T_U: \mathcal{F}(U) \longrightarrow \mathcal{F}(U) = \mathcal{F}(U, \mathcal{F})$, $T_U(s) = \tilde{s}$. When \mathcal{T} be a sheaf, we have:

[Thm] If F is a sheaf, then $\tau: \mathcal{F} \to \overline{F}$ is a sheaf iso. show T_U is inj. : Suppose $A, b \in \mathcal{F}(U)$ s.t. $T_U(A) = T_U(b) \in \mathcal{F}(U, \mathcal{F})$. $T_U(a) = \tilde{a} : U \longrightarrow \tilde{f}$ with $\tilde{a}(x) = a_x = r_x^U a$ where $r_x^U : F(U) \longrightarrow F_x$ is the data of $\lim_{x \in U}$. Hence $T_U(a) = T_U(b)$ means $T_X a = T_X b$ for all $x \in U$. Fact: For direct limit $A_i \xrightarrow{f_{ij}} A_j$, given any $\alpha_1, \alpha_2 \in A_i$ with $f_i \searrow_{L} Uf_j$ $f_i(x_1) = f_i(x_2)$, there exists j s.t. $f_{ij}(x_1) = f_{ij}(x_2)$. $\xrightarrow{\alpha \to \beta} f(u) \xrightarrow{\tau \cup \nu} f(u)$ Hence, there exists open set $V_{x} \ni x$, s.t. $t_{v_{x}}^{U} a = t_{v_{x}}^{U} b$. $U = \bigcup_{x \in V} V_{x}$, $t_{v_{x}}^{U} a = t_{v_{x}}^{U} b$ means $a = b \in \mathcal{F}(U)$ by axiom s. ot sheaf. Show To is sury.: Tu: F(U) -> F(U) = J'(U, F). Let $\sigma \in \mathcal{J}(U, \widehat{\tau})$. Pick $x \in U$, we have $\sigma(x) \in \mathcal{F}_x$. By direct limit property, there exist a n.h.h. VIx and SET(V), s.t. $f_x^V S = \sigma(x)$. Since $f_x^V S = S_x = \tilde{S}(x) = T_V(S)(x)$, we have direct limit $A_i \rightarrow A_j$ $f_i \searrow_{L} f_j$ $T_v(S)(x) = \sigma(x)$. σ and $T_v(S)$ are sections of étalé space, and sections have local inverse T_L , hence any V bel 31 and two sections of étalé space agree at one point will ac A: st. f:a:= b agree at a n.b.h. So there exists a n.b.h. W of x,

s.t. $\sigma|_{W} = \tau_{V}(s)|_{W} = \tau_{w}(r_{W}^{v}s)$, the last equation is because

$$\tau \text{ is a sheaf mapping}: \quad \mp(v) \xrightarrow{\tau_v} \quad \mp(v) \\ \stackrel{\tau_w}{\to} \quad \boxed{\begin{array}{c} & & \\ & \\ & &$$

The above process can be done for any $x \in U$, hence we can find an open cover $\{U_i\}$ of U and $S_i \in \mathcal{T}(U_i)$ s.t. $\mathcal{T}|_{U_i} = \mathcal{T}_{U_i}(S_i)$ (Replacing w to Vi and two to si .)

We want to find $s \in T(U)$ s.t. $T_U(s) = \sigma$, i.e. $T_U(s)|_{U_i} = \sigma|_{U_i} = T_{U_i}(s_i)$. So it suffices to find $s \in T(U)$ s.t. $T_U(s)|_{U_i} = T_{U_i}(s_i)$. Play same trick of commutative dicegram:

 $\begin{array}{cccc} \mathcal{F}(U) \xrightarrow{\mathcal{U}} & \overline{F}(U) \\ \mathcal{T}_{U_{i}}^{\mathcal{U}} & & \int t_{\overline{F}}^{\mathcal{U}_{i}} \\ \mathcal{T}_{U_{i}}^{\mathcal{U}} & & \int t_{\overline{F}}^{\mathcal{U}_{i}} \\ \mathcal{F}(U_{i}) \xrightarrow{\mathcal{T}_{U_{i}}} & \overline{F}(U_{i}) \end{array} \end{array} , \quad We \quad obtain \quad \operatorname{Tu}(s)|_{U_{i}} = \operatorname{Tu}(t^{\mathcal{U}_{i}}s) \quad for \quad any \quad s \in F(U) \\ \mathcal{T}_{U_{i}}^{\mathcal{U}} & & \overline{F}(U_{i}) \end{array}$

So we suffices to find $S \in F(U)$ s.t. $t_{U_i}^U S = S_i$. It's easy to find S by glueing. $U_{U_i} U_{U_i}(T_{U_i} S_i) = \sigma I_{U_i} U_{U_i} = U_{U_i} U_{U_i}(T_{U_i} S_{U_i})$ and $U_{U_i} U_{U_i}$ is injective, we have $t_{U_i}^{U_i} S_i = t_{U_i}^{U_i} S_j$. Since F is a sheaf and $U = \bigcup U_i$, there exists $S \in F(U)$ s.t. $t_{U_i}^U(S) = S_i$. By above analysis, we complete the proof.

[Rmk] For a sheaf \mathcal{F} , find étalé space $\tilde{\mathcal{F}}$ and then take $\tilde{\mathcal{F}} = \mathcal{F}(-, \tilde{\mathcal{F}})$. The thm tells you $\mathcal{F} \cong \tilde{\mathcal{F}}$, so $\tilde{\mathcal{F}}$ contains inf. (information) of \mathcal{F} . $\tilde{\mathcal{F}}$ contains inf. of $\tilde{\mathcal{F}}$, so $\tilde{\mathcal{F}}$ contains inf. of \mathcal{F} . But $\tilde{\mathcal{F}}$ is constructed from \mathcal{F} , so \mathcal{F} also contains inf. of $\tilde{\mathcal{F}}$. In conclusion, the étalé space contains same amount inf. As sheaf \mathcal{F} — hence, a sheaf is very often defined to be an étalé space with algebraic structure along its fibers. But when we encounter presheaf, the associated étalé space is an auxiliary construction.

[Rmk] For sheaf \mp , we may not distinguish \mp and $\widehat{\mp}$, i.e., we may identify two notations $\mp(U)$ and $\varGamma(U, \widehat{\mp})$ in some cases.

[Rmk] Relationship between \mp, \mp, \mp .

[Slogan] stalks remain un changed by sheafication

$$\overline{F}_{x} = \lim_{x \in U} \Gamma(U, \widetilde{T}) = \lim_{x \in U} \Gamma(U, U, T_{y}) = \overline{F}_{x}$$

[Construction] We've known $F_x = \lim_{x \in U} \mathcal{F}(U)$. Actually there is a concrete construction for \mathcal{F}_x , that is: $\mathcal{F}_x = \lim_{U \ni x} \mathcal{F}(U) / where$ (f, V)~(g, W) iff there is an open att $\subseteq V \cap W$ s.t. $\mathcal{T}_H^V f = \mathcal{T}_H^W g$.

- 1. Given a sheaf mor $\varphi: \mathcal{F} \rightarrow \mathcal{G}$, it induces a stalk mapping $\varphi_{x}:\mathcal{F}_{x} \rightarrow \mathcal{G}_{x}$ by $\varphi_{x}[(f,U)] = [\varphi_{U}(f), U]$ where $[\cdot]$ means equivalence class.
- 2. Let $\varphi: \mp \rightarrow g$, $\varphi: \mp \rightarrow g$ be sheaf mors. Then $\varphi= \varphi$ iff $\varphi_x= \varphi_x$ for all $x \in X$.
- 3. $\ker(\varphi_{x}) = (\ker \varphi)_{x}$. More det ails: https://web.ma.utexas.edu/users/slaoui/notes/Sheaf_Cohomology_3.pdf

The rest part is about exactness in homological algebra. [Def] Let ∓, G be sheaves of abelian grps over space X with G a subsheaf of ∓. Let Q be the sheaf generated by the presheaf U→^{Huy}/Guy Then Q is called the quotient sheaf of ∓ by G and denoted by ∓/G.

LRmk] Q is the sheafication of the presheaf $U \mapsto \frac{\tau(u)}{g(u)}$, hence, Q(U) = $\frac{\tau}{g(u)} \neq \frac{\tau(u)}{g(u)}$.

 $\begin{aligned} & \text{EConstruction} \end{bmatrix} \text{ Let's construct a natural sheaf surjection } \mathcal{F} \to \mathcal{F}/\mathcal{G} \cdot \text{One} \\ & \text{may think it's surj projections } \mathcal{F}(U) \to \mathcal{F}(U)/\mathcal{G}(U) , \text{ but note that} \\ & \mathcal{F}/\mathcal{G}(U) \neq \mathcal{F}(U)/\mathcal{G}(U), \text{ so there still remains some work. Denot } \mathcal{H} \text{ be the} \\ & \text{presheaf } [U \mapsto \mathcal{F}(U)/\mathcal{G}(U)]_U \cdot \text{Consider the presheaf map } \tau: \mathcal{F} \to \mathcal{H} \\ & \text{ with } \mathcal{T}_U: \mathcal{F}(U) \to \mathcal{F}(U)/\mathcal{G}(U) \cdot \text{ It induces a map between stalks} \\ & \mathcal{T}_x: \mathcal{F}_x \to \mathcal{H}_x \text{ by going to direct limit } \mathcal{F}(U) \to \mathcal{F}(U) \to \mathcal{F}(U) \\ & \quad \end{aligned}$

Then we induce a contimapping of étalé spaces: $\tilde{\tau}: \tilde{\tau} \rightarrow \tilde{H}$. $\varkappa \mapsto \tau_{\pi}(\pi)$ $F(U) \rightarrow F(V)$ $F_{x} = \frac{1}{2!} + \frac{1}{2!}$

This is the desired sheaf mapping onto the quotient sheaf. [Def] (Exactness) If A,B, and C are sheaves of abelian grps over X and

 $A \xrightarrow{3} B \xrightarrow{h} C$ is a sequence of sheaf mors, then this sequence is exact at B if the induced sequence on stalks

 $A_{x} \xrightarrow{h_{x}} B_{x} \xrightarrow{h_{x}} C_{x}$ is exact for all $x \in X$. A short exact sequence is a sequence $O \rightarrow A \rightarrow B \rightarrow C \rightarrow O$ which is exact at A, B. and C, where O denotes the constant zero sheaf.

[Rmk] Abelian property can pass to direct sum. So stalks are also abelian grps. [Rmk] One may ask, why don't we define exact at B by exactness of the sequence $\mathcal{A}(U) \rightarrow \mathcal{B}(U) \rightarrow \mathcal{C}(U)$ for each open U? That's because exactness is a local property. Locally exact $\mathcal{A}_{*} \rightarrow \mathcal{B}_{*} \rightarrow \mathcal{C}_{*}$ doesn't mean globally exact $\mathcal{A}(U) \rightarrow \mathcal{B}(U) \rightarrow \mathcal{C}(U)$. The usefulness of sheaf theory is precisely in finding and categorizing obstructions to the "global exact ness" of sheaves.

[Exp] X is a connected complex mf. Let O be the sheaf of holomorphic functions on X and let O* be the sheaf of nonvanishing holomorphic functions on X which is a sheaf of ab grps under multiplication. (Nonvanishing implies we can do division, which makes O* a sheaf of ab grps). Consider the sequence :

 $0 \rightarrow \mathbb{Z} \xrightarrow{i} \mathcal{O} \xrightarrow{exp} \mathcal{O}^* \longrightarrow 0$ where \mathbb{Z} is the constant sheaf $\mathbb{Z}(U)=\mathbb{Z}$, is the inclusion map and $exp: \mathcal{O} \longrightarrow \mathcal{O}^*$ is $exp_U: \mathcal{O}(U) \rightarrow \mathcal{O}^*(U)_J \xrightarrow{f} \mapsto exp_U(f)$ with $exp_U(f)(\mathbb{Z}) = exp(2\pi i f_{(\mathbb{Z})}), \forall 2 \in U$ (non vanishing on U) To show this sequence is exact, we want to show at each $x \in \mathbb{X}_J$ $0 \rightarrow \mathbb{Z}_{\mathbb{X}} = \mathbb{Z} \xrightarrow{i_{\mathbb{X}}} \mathcal{O}_{\mathbb{X}} \xrightarrow{exp_{\mathbb{X}}} \mathcal{O}_{\mathbb{X}}^* \longrightarrow 0$ is exact. Im $i_{\mathbb{X}} = \mathbb{Z}$, so it remains to check $\ker(exp_{\mathbb{X}}) = \mathbb{Z}$. Use connete construct for stalks $\mathcal{O}_{\mathbb{X}} \xrightarrow{exp_{\mathbb{X}}} \mathcal{O}_{\mathbb{X}}^*$ (\mathcal{O}^* is a group with $[(f,U)] \mapsto [exp_U(f), U] = 1_{\mathbb{X}} \in \mathcal{O}_{\mathbb{X}}^*$, i.e. $[exp(2\pi i f_J, U] = 1_{\mathbb{X}} = [(1, U)]$. By def of equivalence class, there exists n.b.h. $V \subseteq U$ s.t. $exp(2\pi i f_{\mathbb{X}}) = 1$, $\forall x \in V$. So f(x) is a constant map on V_J i.e., $[(f,U)] = [(l,V)], [E\mathbb{Z}. Hence ker(exp_x) = \mathbb{Z}. \square$

[Exp] Let A be a subsheaf of B. Then $0 \rightarrow A \xrightarrow{1} B \rightarrow B/A \rightarrow 0$ is an exact sequence of sheaves. (Note that only can sheaf of obgrp can do quotient, so A. B are sheaves of ab grps, although we do not explicitly state it).

Pf: [Fact]: Colimit ling in abelian category preserves exactness. Since $0 \rightarrow F(U) \rightarrow G(U) \rightarrow G(U)/F(U) \rightarrow 0$ are exact sequence of ab grps, we have $0 \rightarrow \lim_{x \in U} F(U) \rightarrow \lim_{x \in U} G(U) \rightarrow \lim_{x \in U} G(U)/F(U) \rightarrow 0$ we have $0 \rightarrow \lim_{x \in U} F(U) \rightarrow \lim_{x \in U} G(U)/F(U) \rightarrow 0$ we have $0 \rightarrow F_{\pi} \rightarrow G_{\pi} \rightarrow H_{\pi} \rightarrow 0$ is exact, where H is presheaf $U \rightarrow F(U)/4U$ Since stalks remain unchanged under sheaf if ication, we have $0 \rightarrow F_{\pi} \rightarrow G_{\pi} \rightarrow (F/G)_{\pi}^{H_{\pi}} \rightarrow 0$ is exact. Hence sheaf sequence $0 \rightarrow F \rightarrow G \rightarrow F/G \rightarrow 0$ is exact.

[Exp] Let $X = \mathbb{C}$ and \mathcal{O} be the holomorphic functions on \mathbb{C} . Let J be the subsheaf of \mathcal{O} consisting of holomorphic functions Vanishing at $Z = 0 \in \mathbb{C}$. Then by the above example, $0 \rightarrow J \rightarrow \mathcal{O} \rightarrow \mathcal{O}/J \rightarrow 0$ is exact sequence of sheaves.

At 240, the sequence is $D \rightarrow C \rightarrow C \rightarrow 0 \rightarrow 0$

At z = 0, the sequence is $0 \rightarrow 0 \rightarrow \mathbb{C} \rightarrow \mathbb{C} \rightarrow 0$

[Exp] X is a connected Hausdorff space and a, bex fulfilling $a \neq b$. Let Z denote the constant sheaf of integers, i.e. Z(U) = Z. Let J denote the subsheaf of Z wich vanishes at a and b, that means $i_U: J(U) \rightarrow Z(U)$ is an inclusion with $i_U(a) = i_U(b) = 0$ for each U

Sheaf
$$\mathbb{Z}$$
 $Z = \mathbb{Z}(U)$
 X $U \to J \to \mathbb{Z} \to \mathbb{Z}/J \to 0$
 \mathbb{Z}

 $\begin{array}{c} \text{ $\bot f$ $x=a$ or $x=b$, the seq of stalks is $0 \rightarrow 0 \rightarrow \mathbb{Z} \rightarrow \mathbb{Z} \rightarrow 0 \\ \text{ $If $x=a$ and $x=b$, the seg of stalks is $0 \rightarrow \mathbb{Z} \rightarrow \mathbb{Z} \rightarrow 0 \rightarrow 0 \\ \hline \end{array}$

The following sheaf means sheaf of ab gyps or sheaf of modules.

[Def] A graded sheaf is a family of sheaves indexed by integers, F*={F*}a e Z. A sequence of sheaves (or sheaf sequence) is a graged sheaf connected by sheaf mappings: $\cdots \rightarrow \mathcal{T}^{\circ} \xrightarrow{\alpha_{0}} \mathcal{T}^{1} \xrightarrow{d_{1}} \mathcal{T}^{2} \xrightarrow{d_{2}} \mathcal{T}^{3} \xrightarrow{} \cdots \quad (*)$ A differential sheaf is a sequence of sheaves where $\alpha_j \alpha_{j-1} = 0$ in (*). A <u>tesolution</u> of a sheaf F is an exact sequence of sheaves of the form $0 \to 7 \to 7^{\circ} \to 7^{1} \to \cdots \to 7^{m} \to \cdots$ which we also denote symbolically by $o \rightarrow \mp \rightarrow \mp^*$ [Rmk] Various type of information for a given sheaf 7 can be obtained from knowledge of a given resolution. Besides, resolution can be used in computing cohomology demonstrated next section. [Exp] Let X be a differentiable m.f. of real dimension m and let Ex be the sheaf of real-valued differential form. We'll prove $0 \to \mathbb{R} \xrightarrow{i} \mathcal{E}_{X}^{\circ} \xrightarrow{d} \mathcal{E}_{X}^{1} \xrightarrow{d} \cdots \xrightarrow{j} \mathcal{E}_{X}^{m} \longrightarrow 0$ is a resolution of sheaf IR. Fact: On a star-shaped domain U in \mathbb{R}^n , if $f \in \mathcal{E}^n(U)$ with df = 0, then there exists $u \in \mathcal{E}^{p_1}(U)(p>0)$ s.t. du = f. For any x ∈ X, find a star-shaped domain U of x. Consider seq $0 \rightarrow |R(U) = |R \xrightarrow{\tau_U} \mathcal{E}^{\circ}_{x}(U) \xrightarrow{d} \mathcal{E}^{1}_{x}(U) \xrightarrow{d} \cdots \xrightarrow{} \mathcal{E}^{m}_{x}(U) \rightarrow 0$ It's exact at $\mathcal{E}_{x}^{\varphi}(U)$, $\varphi_{\overline{\gamma}1}$. By fact, kerd \subseteq Imd. By d'=0, kord 2 Im d. So kerd = Im d. It's exact at $\mathcal{E}_{0}^{P}(U)$. $\mathbb{R} \xrightarrow{1}{\rightarrow} \mathcal{E}_{x}^{*}(U) = \mathbb{C}^{\infty}(U,\mathbb{R}) \xrightarrow{d} \mathcal{E}_{x}^{1}(U) = \{f = \xi : dx; \}$ f; €C~(U)} $f \in \ker df = \sum_{i=1}^{\infty} \frac{\partial f}{\partial x_i} = 0 \iff \frac{\partial f}{\partial x_i} = 0 \text{ on } U \Leftrightarrow f|_U \in \mathbb{R} \text{ is a const map}$ ⇔f∈Imi Hence it's exact. All in all, the seguence passing to stalks are also exact. [Exp] X is a topo m.f. and G is an abelian grp. We want to derive a resolution for the constant sheaf of G over X. Denote Sp(U, Z) the abelian grp of integral singular chains of degree p in $U_1 \mapsto U_2$, $Sp(U_1 Z) = \{ \Sigma_a; n_i \mid a_i \in \mathbb{Z}, n_i : \Delta^p \to U \} \cdot (C_p(U) \text{ in Hatcher})$ Denote $S^{P}(U,G) = Hom_{\mathbb{Z}}(S_{P}(U,\mathbb{Z}),G)$ which is the group of singular

cochains in U with coefficients in G. Let S denote the coboundary operator, $S : S^{p}(U,G) \rightarrow S^{p+1}(U,G)$. Let SP(G) be the sheaf over X generated by the presheaf $U \mapsto S^{P}(U,G)$ with induced differential mapping $S^{P}(G) \xrightarrow{\bullet} S^{TT}(G)$. (How to induce this mapping? Rephrase our guestion is alwayse useful. $S^{P}(-,G)$, $S^{P+1}(-,G)$ are presheaves. We've know $S: S^{P}(-,G) \rightarrow S^{P+1}(-,G)$ given by coboundary mapping Su: SP(U,G) -> SP+1(U,G). We want to induce a sheaf map $\overline{S}: \overline{S}^{p}(-,G) \longrightarrow \overline{S}^{r+1}(-,G)$. Here're detailed steps: (1) Induce mapping between stalks $S_{x}: S_{x}^{p}(-, G) \longrightarrow S_{x}^{P+1}(-, G)$ ③ Induce mapping between étalé space S: S^P(-,G) → S^{P+1}(-,G) $\mathcal{X} \mapsto \delta_{\pi}(x)$ (3) Induce mapping between sections $\overline{S}: \Gamma(-, \widetilde{S}^{p}(-, G)) \rightarrow \Gamma(-, \widetilde{S}^{p+1}(-, G))$ Consider the unit ball U in Euclidean space. By alg topo, we've computed H*(U;G)=SG *=0. That means the seg $0 \rightarrow G \xrightarrow{\sim} S^{(U,G)} \xrightarrow{\sim} \cdots \rightarrow S^{(U,G)} \xrightarrow{S^{(U,G)}} S^{(U,G)} \xrightarrow{S^{(U,G)}} \cdots$ is exact (kers = 6 by cohomology). Hence it's exact passing to any x in U. So the seg $0 \rightarrow G \rightarrow S^{\bullet}(G) \xrightarrow{S} S'(G) \xrightarrow{S} S^{2}(G) \rightarrow \dots \rightarrow S^{m}(G) \rightarrow \dots$ is a resolution of const sheaf G, which we abbreviate by $0 \rightarrow G \rightarrow S^{\epsilon}(G)$. We could also consider (" chains and similary obtain a resolution $0 \to G \to S^{*}_{\infty}(G). \ (\ 0 \to G \to S^{*}_{\infty}(G) \to \cdots \to S^{*}_{\infty}(G) \to \cdots)$ [Exp] X is a complex m.f. of complex dimension n. Let $\mathcal{E}^{p,q}$ be the sheaf of (p,q) forms on X. Consider the sequence of sheaves in which pro fixed : $0 \to \Omega^{P,2} \xrightarrow{2} \mathcal{E}^{P,0} \xrightarrow{3} \mathcal{E}^{P,1} \xrightarrow{3} \cdots \longrightarrow \mathcal{E}^{P,n} \xrightarrow{0} \mathcal{O}$ where \mathcal{N}^{P} is defined as the kernel sheaf of the mapping $\mathcal{E}^{\mathsf{P}} \circ \overline{\mathcal{I}}_{\mathcal{E}}^{\mathsf{P}, \mathsf{Z}}$ kernel sheat Ω^P is the subsheaf of $\mathcal{E}^{P,o}$, hence Ω^P is the sheaf of holomorphic differential forms of type (p, 0), i.e., $\varphi \in \Omega^{T}(U)$ has the form $\varphi = \sum_{i=1}^{\prime} \varphi_{i} dz^{I}$, $\varphi_{i} \in O(U)$. For each p, we have a resolution

of Ω^{P} : $0 \rightarrow \Omega^{P} \rightarrow \mathcal{E}^{P,*}$. The proof use $\overline{\rho} = 0$ and Grothendick version of the Poincaré lamma for the $\overline{\sigma}$ -operator. Detailed proof is similar in proving resolution $0 \rightarrow R \rightarrow \mathcal{E}^{*}$. Statement of the Grothendick version of the Poincaré lemma for the $\overline{\sigma}$ -operator: If co is a (P, Q) - form defined in a polydisc Δ in \mathbb{C}^{n} where $\Delta = \{ \overline{\varepsilon} \mid |\overline{\varepsilon}; | < t, i = 1, \dots, n \}$, and $\overline{\varepsilon} \omega = 0$ in Δ , then there exists a (P, Q-1) - form u defined in a slightly smaller polydisc $\Delta' = c \Delta$ so that $\overline{\sigma} = \omega$ in Δ' .

[Exp] X is a complex m.f. . Ω^P is the kernel sheaf of sheaf mapping E^{p,o} = E^{p,1}. Consider sheaf sequence

 $\circ \to \mathbb{C} \to \mathfrak{L}^{\circ} \xrightarrow{\circ} \mathfrak{L$

We claim it's a resolution of C without proof. P

[Def] Let L^a and M^* be differential sheaves. Then a homomorphism $f: L^a \to M^*$ is a sequence of holomorphism $f_j: L^{j} \to M^{j}$ which commutes with the differentials of L^* and M^* . A holomorphism of resolution of sheaves is a homomorphism of the underlying differential sheaves.

 $\begin{array}{ccc} & & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & \\ & & & & & \\ & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & & \\ & & & & & \\ & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & &$

[Exp] X is a differentiable m.f. and Let

 $0 \rightarrow \mathbb{R} \rightarrow \mathbb{E}^{*}, 0 \rightarrow \mathbb{R} \rightarrow S_{\infty}^{*}(\mathbb{R})$ be the resolutions of \mathbb{R} given by previous examples. Define $I: \mathbb{E}^{*} \longrightarrow S_{\infty}^{*}(\mathbb{R})$ by setting $I_{U}: \mathbb{E}^{*}(U) \longrightarrow S_{\infty}^{*}(U, \mathbb{R})$ $\varphi \longmapsto I_{U}(\varphi)$ which is $I_{V}(\varphi)(c) = \int_{c} \varphi$

It induces a map of resolutions

$$o \rightarrow R \xrightarrow{i} S^{*}_{\infty}$$

$$i \in J$$

$$B \rightarrow R \xrightarrow{i} S^{*}_{\infty}(R)$$
To show it's a homomorphism, we only need to show the
cliagram commutes.

$$0 \rightarrow R \xrightarrow{i} S^{\circ}_{\infty} \rightarrow \cdots \rightarrow S^{\circ}_{\infty} \xrightarrow{i} S^{\circ}_{\infty}(R) \rightarrow S^{\circ}_{\infty}(R) \rightarrow \cdots$$
For (3:

$$\varphi = \begin{bmatrix} y \rightarrow R \\ y \rightarrow S^{\circ}_{\infty} \rightarrow \cdots \rightarrow S^{\circ}_{\infty}(R) \rightarrow S^{\circ}_{\infty}(R) \rightarrow \cdots$$
For (3:

$$\varphi = \begin{bmatrix} y \rightarrow R \\ y \rightarrow S^{\circ}_{\infty} \rightarrow \cdots \rightarrow S^{\circ}_{\infty}(R) \rightarrow S^{\circ}_{\infty}(R) \rightarrow \cdots$$
For (3:

$$\varphi = \begin{bmatrix} y \rightarrow R \\ y \rightarrow S^{\circ}_{\infty} \rightarrow \cdots \rightarrow S^{\circ}_{\infty}(R) \rightarrow S$$

[Prop] Suppose $\varphi \in \mathcal{E}^{P,q}(U)$ for U open in ("and $d\varphi = 0$. Then for any point $p \in U$, there is a n.b.h. N of p and a differential form $\mathcal{U} \in \mathcal{E}^{P-U_2 - 1}(N)$ s.t. $\partial \overline{\partial} \mathcal{U} = \varphi$ in N.

f: key: application of Poincaré lemmas for the operators $d, \partial, and \bar{\partial}$. $\mathcal{E}_{x}^{r-1} \xrightarrow{d} \mathcal{E}_{x}^{} \xrightarrow{d} \mathcal{E}_{x}^{r+1}$ is exact, so $d\varphi = 0$ means there is $u \in \mathcal{E}_{x}^{r-1}$ s.t. $du = \varphi$, where $t = \varphi + \underline{q}$ is the total degree of φ .

Write
$$u = u^{r-1}, 0 + \dots + u^{0}, r^{-1}$$
, then $du = (\partial + \overline{\partial}) U = U^{r,0} + U^{r-1,1} + \dots$
But $du = \varphi$ which is a (P, Q) -form, hence we only have these terms:
 $du = \partial U^{r-1, Q} + \overline{\partial} U^{P, Q-1}$. Since $\overline{\partial} U^{P-1, Q} = \partial U^{P, Q-1} = 0$, we can
apply $\overline{\partial}$ and ∂ Poincaré Lemmas, so there are $\mathcal{H}_{i}, \mathcal{H}_{i} \in \mathcal{E}_{x}^{P-1, Q-1}$
s.t. $\partial \mathcal{H}_{i} = U^{P, Q-1}$ and $\overline{\partial} \mathcal{H}_{i} = U^{P-1, Q}$. Hence, we have
 $\varphi = du = \partial U^{P-1, Q} + \overline{\partial} U^{P, Q-1}$
 $= \partial \overline{\partial} \mathcal{H}_{2} + \overline{\partial} \partial \mathcal{H}_{1}$
 $= \partial \overline{\partial} (\mathcal{H}_{2} - \mathcal{H}_{1})$

Cohomology theory

In this Section, we'll see how resolutions can be used to represent the cohomology groups of a space. In particular, we shall see every sheaf admits a canonical resolution with certain nice (cohomological) properties. [Fact] For a short exact sequence of sheaves over X $0 \to \mathcal{A} \to \mathcal{B} \to \mathcal{C} \to 0$ Take its value at X, we have a sequence $0 \longrightarrow \mathcal{A}(X) \longrightarrow \mathcal{B}(X) \longrightarrow \mathcal{C}(X) \longrightarrow 0$ This sequence is exact at U(x) and B(X) but not mecessarily at C(x). [Exp] X is a connected Hausdorff space, let a, b = X and a = b. 2 is the constant sheaf of integers on X and J denote the subsheaf of Z vanishing at a and b. We have exact seq 0→J→Z→Z/J→0. Consider sequence $0 \to \mathcal{T}(x) \to \mathbb{Z}(x) \to \mathbb{Z}/\mathcal{J}(x) \to o$ $\Gamma(x, \mathbb{Z}) := \Gamma(x, \mathbb{Z}) \qquad \Gamma(x, \mathbb{Z}/f) =: \Gamma(x, \mathbb{Z}/f)$ $\forall f \in S'(x, \mathbb{Z}), f(\alpha) = f(b). \quad \forall g \in S'(x, \mathbb{Z}/J), g(\alpha) \text{ may not equal to } g(b)$ So $Z(x) \rightarrow Z/T(x)$ is not surj. Cohomology gives a measure to the amount of inexactness of the sequence at C(X).

[Construction] Let F be a sheaf over a space X and let S be a closed subset of X. Define $F(s) := \lim_{U \to s} F(U)$ We've shown the sheaf mor $T: T \rightarrow \overline{T} = \int (-, \widehat{T})$ is on iso. Hence $\mathcal{F}(s)$ can be identified with $\mathcal{J}(s, \tilde{\tau}) = \mathcal{J}(s, \pi^{-1}(s) =: \tilde{\mathcal{F}}(s)$ where Ti: F→X is the étalé map. For simplicity, we denote

 $\mathcal{F}(s)$ by $\mathcal{F}(s,\mathcal{F})$.

Note that: 1) for any $s \in F(S)$, there exists open set $U \ge S$, and exists f E F(U) = 5 (U, Flu) s.t. fls = S. (Property of direct limit)

$ \stackrel{\exists f}{\longrightarrow} \mathcal{F}(V) \longrightarrow \mathcal{F}(V) $	Prop: Given a direct limit A: fis Aj
1 × × / × ×	for any LEL, \exists i and $a \in A_i$ s.t. fia = L. It's proved by
F(S)	pick image.

3 For any se F(S), there exists an open covering {U; } of S and s; e f(U;), s.t. Silsnu; = slsnu;. Indeed, we pick open U2S s.t. there exists fe F(U) with fly = sly. We decompose U to a union of open sets {Ui}. Let flu; denoted by Si. So we have silsnu; = fluins = sluins Ц O says that we can extend @ says that we can decompose sEF(S) U.... SE F(S) to a section under an open covering (s): over an open set U U. silving = slung

From now on, we're dealing with sheaves of ab grp over a paracompact Hausdorff space X for simplicity.

[Def] A sheaf F over a space X is soft if for any closed sex the restriction mapping $F(x) \rightarrow F(S)$ is surj, i.e., any section of F over S can be extended to a section of F over x.

ERMK] It's a kind of lifting property. [Thm] If A is a soft sheaf and $0 \longrightarrow \mathcal{A} \xrightarrow{9} \mathcal{B} \xrightarrow{h} \mathcal{C} \longrightarrow 0$ is a short exact seg of sheaves, then the induced seg $0 \to \mathcal{A}(x) \xrightarrow{g_x} \mathcal{B}(x) \xrightarrow{h_x} \mathcal{C}(x) \to 0$ is exact. of: We only need to show it's exact at C(X). \Leftarrow Given ceC(X), we need to find it's preimage under hx in B(X). • Find {biss on {Ui} in B(X). Since sheaf seq is exact, so for any x ∈ X, we have hx: Bx → Cx is surj. Hence, ILEBx = t. hal = txc E Cx. By prop of direct limit, I Vopen and bEB(U) s.t. Txb=LEBx. Consider the commutative diagram : b B(U) hu C(U) clu So hub= clu. $\begin{array}{c} \begin{array}{c} \begin{array}{c} x_{x}^{U} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} B_{x} \xrightarrow{h_{x}} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} C_{x} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} There fore we can find an open \\ \hline \\ cover of X \{U_{i}\} \\ \end{array} \\ \begin{array}{c} cover of X \{U_{i}\} \\ \end{array} \\ \end{array} \\ \begin{array}{c} cover of X \{U_{i}\} \\ \end{array} \\ \begin{array}{c} cover of X \{U_{i}\} \\ \end{array} \\ \end{array} \\ \begin{array}{c} cover of X \{U_{i}\} \\ \end{array} \\ \begin{array}{c} cover of X \{U_{i}\} \\ \end{array} \\ \end{array} \\ \begin{array}{c} cover of X \{U_{i}\} \\ \end{array} \\ \end{array}$ • Show {b;} can be pieced to a global section. Since X is paracompact, I locally finite refinement fSigot flig s.t. Si are closed set, Vi. Consider the following set $P = \{(b, S) | S = \bigcup_{i \in T} S_i, b \in B(S), h_s(b) = c_{is} \}$ P is partially ordered by (b, S) = (b', S') if S = S' and b'ls = b. By Axiom S2 of the sheaf, every linearly ordered chain has a maximal element by glueing. Hence by Zorn's lemma, there exists a maximal set S and a section bE.B(S) s.t. h(b) = cls. It remains to show S=X. Suppose on the contrary that there exists SigESSig s.t. SigES. If Sins= &, then we have b' & B(SUS;) by setting b' = Sb xes, clearly b; xes; $h(b)|_{sus_j} = C|_{sus_j} since h(b)|_s = C|_s and h(b_j)|_{s_j} = C|_{s_j}. So S is not max,$

honce S; (15 + Q. Since hollons; = clons; = h(b;)lons; , we have h(b-b;)=h(b)-h(b) = 0 on S; AS. By exactness at U(SAS;) >> B(GAS;) >> C(SAS;), there $exists a \in \mathcal{A}(sAs_i) \quad s.t. \quad g(a) = b - b_j \cdot Since \mathcal{A} is soft, we extend$ a to a global section a. Define DE B(SUS;) by $\widetilde{\mathbf{b}} = \begin{cases} \mathbf{b} & \text{on } S \\ \mathbf{b}_{j} + g(\widetilde{\mathbf{a}}) & \text{on } S_{j} \end{cases} \quad (\text{on } S_{j} \cap S_{j} \quad b_{j} + g(\mathbf{a}) = b_{j} + b - b_{j} = b)$ Since h(b) = clsus;, S is not max. We complete the proof. I [Def] A sheaf of abelian grps F over a paracompact Hausdorff space X is fine if for any locally finite open cover {Ui} of X, there exists a family of sheaf mors $\{\eta_i: \mathcal{T} \to \mathcal{F}\}$ s.t. (a) $\Sigma \eta_i = 1$ (b) $n_i (T_x) = 0$ for all x in some n.b.h. of the complement of Ui The family {1;} is called a partition of unity of subordinate to the covering *SUif*. $U_i = \forall x \in W$ $N_i(\mathcal{F}_x) = 0$. We require W be n.b.h. of U_i^c , s.t. it's identically zero on U_i^c and a n.b.h. of ∂U_i . [Rmk] [Exp] Since partition of unity subordinate to any open cover is exist, so we have following fine sheaves: 1. Cx for X a para compact Hausdorff space is a fine sheaf. 2. Ex for X a para compact differentiable mf. 3. Ex for X a paracompact almost-complex mf. 4. A locally free sheaf of Ex-modules, where x is a differentiable mf. $(5 \Rightarrow 4)$ 5. If R is a fine sheaf of rings with unit, then any module over Ris a fine sheaf. \square [prop] Fine sheaves are soft pf: Let \mp be a fine sheaf over X and $S \subseteq X$, $s \in \mp(S)$. By def of soft, we w.t.s. the section s can be extended to a section over X. We hope to construct a section over X by glueing sections on open covering of X.

There is an open covering $\{U_i\}$ of S and sections $S_i \in \mathcal{T}(U_i)$ s.t. $S_i | S \cap U_i = S | S \cap U_i$. Let $U_o = X - S$ and $S_o = 0$, so that $\{U_i\} \cup U_o$ is an open covering of X. Since X is paracompact, we can assume $\{V_i\}$ is locally finite. Hence, by \mathcal{T} soft, we have a partition of unity $\{M_i: \mathcal{T} \to \mathcal{T}\}$ subordinate to $\{U_i\}$. Consider $\{M_i\}_{U_i}: \mathcal{T}(U_i) \longrightarrow \mathcal{T}(U_i)$, we have $\{M_i\}_{U_i}(S_i) \in \mathcal{T}(U_i)$. Since $\{M_i\}_{U_i}(S_i) \mid_{n,b,h, W \in I} \cup_i^{c} = 0$, So $\{M_i\}_{U_i}(S_i) \in (M_i)_{U_i}(S_i) \in \mathcal{T}(X)$.

Define $S = \sum_{i} (N_i)_{U_i}(S_i) \in T(X)$, we'll show it's a section extended by $S \in T(S)$, i.e., check $S|_S = S$

For
$$a \in S$$
, $\widehat{s}(a) = \sum_{i} (N_{i})_{U_{i}} (S_{i})(a) = \sum_{a \in U_{i}} (N_{i})_{U_{i}} (S_{i})(a) \stackrel{S_{i}(a) = S(a)}{=} \sum_{a \in U_{i}} (N_{i})_{U_{i}} (S_$

[Exp] X be the complex and let $U = U_X$ be the sheaf of holomorphic functions on X. Let $S = \{1 \ge 1 \le \frac{1}{2}\}$. Let $f(\underline{z}) = \sum \underline{z}^{n!}$ on S. It cannot be extended to X. So U is not soft and hence not fine.

[Exp] Constant sheaf is not soft and hence not fine. Let G be constant sheaf over X and let a,bex with $a \neq b$. Define $s \in G(\{a,b\})$ by setting s(a)=0 and $s(b) \neq 0$. There doesn't exist $f \in G(X) = G$ s.t. $f|_{a,b} = s$, i.e., $f|_{a}=0 \neq f|_{b}$ wich is impossible, because f is a fix element in G. Hence G is not soft and thus not fine.

[prop] For exact seg $0 \rightarrow A \rightarrow B \rightarrow C \rightarrow 0$ is exact with A, B soft, then C is soft. $Pf: Fix a closed cet S \subseteq X$. Since A is soft, we have the seg $0 \rightarrow A(S) \rightarrow B(S) \xrightarrow{f} C(S)^{S} \rightarrow 0$ $T_{AS}^{*} \qquad \uparrow T_{aS}^{*} \qquad \uparrow T_{eS}^{*} \qquad exact at C(S) and C(X).$ $0 \rightarrow A(X) \rightarrow B(X) \xrightarrow{g} C(X) \rightarrow 0$ For any $S \in C(S)$, $\exists w \in B(S) St$. f(w) = S. Since B is soft, there exists $t \in B(x)$ with $T_{BS}(t) = w$. Consider get, by commutativity, $T_{e,s}^{x} g(t) = s$. So we find suitable $T_{e,s}^{x} \in C(X)$ as an extension of s. [prop] If 0 -> So for S, for Sature is an exact sequence of soft sheaves, then the induced section sequence $0 \rightarrow \mathfrak{Z}_{\mathfrak{o}}(\mathfrak{X}) \rightarrow \mathfrak{Z}_{\mathfrak{o}}(\mathfrak{X}) \rightarrow \cdots$ is also exact. pf: Let Ki = ker (Si → Siti). We have short exact sequences $0 \rightarrow K_i \xrightarrow{2} S_i \xrightarrow{f_i} K_{i+1} \rightarrow o \quad (Im f_i = \ker f_{i+1} = K_{i+1} \cdot s_0 \cdot f_i \cdot s_{i+1})$ key; Induction. $i=1 \quad 0 \to \mathcal{K}_1 = f_0 \, \mathcal{S}_0 = \mathcal{S}_0 \longrightarrow \mathcal{S}_1 \xrightarrow{f_1} \mathcal{H}_2 \longrightarrow o \quad exact \ .$ With So, S. soft, we have R2 soft. Suppose \mathcal{K}_i is soft. For exact seg $0 \rightarrow \mathcal{K}_i \rightarrow \mathcal{S}_i \rightarrow \mathcal{K}_{i+1} \rightarrow 0$ With Ri, Si soft, we have Rit soft. Hence Km soft for all m. Since Ri is soft, we have short exact segs $o \rightarrow k_i(x) \xrightarrow{2} S_i(x) \xrightarrow{+i} H_{i+1}(x) \rightarrow o$. Then we have a long exact seg by splicing thoses short exact seg. $0 \xrightarrow{\circ} S_{\circ}(X) \xrightarrow{2f_{\circ}} S_{1}(X) \xrightarrow{2f_{\circ}} S_{2}(X)$ $\downarrow \chi_{o}(X) \xrightarrow{f_{\circ}} \chi_{1}(X) \xrightarrow{f_{\circ}} \chi_{2}(X) \xrightarrow{f_{\circ}} \chi_{2}(X)$ $\downarrow \chi_{o}(X) \xrightarrow{f_{\circ}} \chi_{1}(X) \xrightarrow{f_{\circ}} \chi_{2}(X) \xrightarrow{f_{\circ}} \chi_{2}(X)$ [Construction] (Canonical soft resolution for any sheaf) Let S be a sheaf over X and let \$ => X be the étalé space associated to \$. Define a presheaf C°(\$)(U) = {f: U→ \$ 1 nof= 10}. It's a sheaf and called the sheaf of discontinous sections of 3 over X. Define sheaf mapping ho: $S \rightarrow C^{\circ}(S)$ by $s \mapsto \overline{s} \in \Gamma(U, C^{\circ}(S))$ where $\tilde{s}: U \rightarrow \tilde{C}(s)$, $x \mapsto s_x$. ho is injective, so we define F'(5) = C'(S)/5 and C'(S) = C'(F'(S)). By induction, we define F'(S) = C''(S)/F''(S) and C'(S) = C'(F'(S)) So we have

 $\begin{array}{ccc} & & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & \\ \end{array} \xrightarrow{} \begin{array}{c} & & & \\ & & \\ & & \\ \end{array} \xrightarrow{} \end{array} \xrightarrow{} \begin{array}{c} & & & \\ & & \\ & & \\ \end{array} \xrightarrow{} \begin{array}{c} & & \\ & & \\ \end{array} \xrightarrow{} \end{array} \xrightarrow{} \begin{array}{c} & & & \\ & & \\ & & \\ \end{array} \xrightarrow{} \begin{array}{c} & & \\ & & \\ \end{array} \xrightarrow{} \end{array} \xrightarrow{} \begin{array}{c} & & & \\ & & \\ \end{array} \xrightarrow{} \begin{array}{c} & & \\ & & \\ \end{array} \xrightarrow{} \begin{array}{c} & & \\ & & \\ \end{array} \xrightarrow{} \end{array} \xrightarrow{} \begin{array}{c} & & \\ & & \\ \end{array} \xrightarrow{} \begin{array}{c} & & \\ & & \\ \end{array} \xrightarrow{} \end{array} \xrightarrow{} \begin{array}{c} & & \\ & & \\ \end{array} \xrightarrow{} \begin{array}{c} & & \\ & & \\ \end{array} \xrightarrow{} \end{array} \xrightarrow{} \begin{array}{c} & & \\ & & \\ \end{array} \xrightarrow{} \begin{array}{c} & & \\ & & \\ \end{array} \xrightarrow{} \begin{array}{c} & & \\ & & \\ \end{array} \xrightarrow{} \begin{array}{c} & & \\ & & \\ \end{array} \xrightarrow{} \begin{array}{c} & & \\ & & \\ \end{array} \xrightarrow{} \begin{array}{c} & & \\ & & \\ \end{array} \xrightarrow{} \end{array} \xrightarrow{} \begin{array}{c} & & \\ & & \\ \end{array} \xrightarrow{} \begin{array}{c} & & \\ \end{array} \xrightarrow{} \begin{array}{c} & & \\ & & \\ \end{array} \xrightarrow{} \begin{array}{c} & & \\ & & \\ \end{array} \xrightarrow{} \begin{array}{c} & & \\ & & \\ \end{array} \xrightarrow{} \begin{array}{c} & \\$

Splicing them together, we obtain the long exact seq

$$0 \rightarrow S \rightarrow C^{0}(S) \rightarrow C^{1}(S) \rightarrow C^{1}(S) \rightarrow \cdots$$

 $f^{1}(S) \rightarrow f^{1}(S)$
We call it the canonical resolution of S and abbreviate by
 $0 \rightarrow S \rightarrow C^{*}(S)$
 $C^{0}(S)$ is soft if S is a sheaf, so $C^{1}(S) = C^{0}(\mathcal{F}(S))$ is soft since
 $\mathcal{F}(S)$ is a sheaf. Hence $D \rightarrow S \rightarrow C^{*}(S)$ is a soft resolution.
Next, we need to define the cohomology grps of a space with coefficients
in a given sheaf.
Let S be a sheaf over X and consider its canonical soft resolution
 $0 \rightarrow S \rightarrow C^{0}(S) \rightarrow C^{4}(S) \rightarrow \cdots$
Take global section X we have a seq by taking (continuous) sections
 $0 \rightarrow \Gamma(X, S) \rightarrow \Gamma(X, C^{0}(S)) \rightarrow \Gamma(X, C^{4}(S)) \rightarrow \cdots$
[Amk] One may feel confused about this notation.
 $\Gamma(X, S) := \Gamma(X, S) , \Gamma(X, C^{0}(S)) := \Gamma(X, \overline{C^{0}(S)}) = C^{1}(S)(-)$
and $\Gamma(-, S) \equiv S(-)$.
[Rmk] If S is soft, then we have exact seq
 $0 \rightarrow \Gamma(X, S) \rightarrow \Gamma(X, C^{0}(S)) \rightarrow \Gamma(X, C^{1}(S)) \rightarrow \cdots \rightarrow \cdots$
Hence by previous property, we have $exact seq$
 $0 \rightarrow \Gamma(X, S) \rightarrow \Gamma(X, C^{0}(S)) \rightarrow \Gamma(X, C^{1}(S)) \rightarrow \cdots \rightarrow \cdots$
Six) $C^{1}S(X) \rightarrow \Gamma(X, C^{1}S) \rightarrow \cdots \rightarrow \cdots$
Six) $C^{1}S(X) \rightarrow \Gamma(X, C^{1}S) \rightarrow \cdots \rightarrow \cdots$
[Def] Let S be a sheaf over a space X and let

 $H^{\frac{1}{2}}(X, S) := H^{\frac{1}{2}}(C^{*}(X, S))$ where $H^{\frac{1}{2}}(C^{*}(X, S))$ is the 9th derived group of the cochain complex $C^{*}(X, S)$. $(0 \rightarrow C^{\circ}(X, S) \rightarrow C^{\frac{1}{2}}(X, S) \rightarrow \cdots)$ The abelian groups $H^{\frac{1}{2}}(X, S)$ are defined for 970 and are called the sheaf cohomology groups of the space X of degree 9 and with coefficient in S [Rmk] This abstract definition is useful to derive general functorial properties of cohomology grps, and we have various other ways to do computations.

[Thm] Let X be a paracompact Hausdorff space. Then
(a) For any sheaf S over X,
(d) H⁰(X,S) =
$$J'(X,S)$$
 (= $S(X)$)
(d) H⁰(X,S) = $J'(X,S)$ (= $S(X)$)
(e) For any sheaf mor h: $A \to B$
there is, for each $\mathfrak{P} \Rightarrow 0$, a grp homo hg: H⁴(X,A) \rightarrow H⁴(X,B)
(f) ho = hx : $A(X) \to B(X)$
(g) hg is the identity map if h is the identity map, $\mathfrak{g} \Rightarrow 0$
(g) hg is the identity map if h is the identity map, $\mathfrak{g} \Rightarrow 0$
(g) hg is the identity map if h is the identity map, $\mathfrak{g} \Rightarrow 0$
(g) hg is the identity map if h is the identity map, $\mathfrak{g} \Rightarrow 0$
(g) hg is $\mathcal{G} \to \mathcal{G} \to \mathcal{G}$ is a second
sheaf mor.
(c) For each short exact seg of sheaves
 $0 \to A \to B \to C \to 0$
there is a grp homo
 $S^{\frac{4}{3}}: H^{\frac{6}{3}}(X,C) \to H^{\frac{9}{4}+1}(X,A)$ for $\forall \mathfrak{g} \geq 0$ s.t.
(d) The induced Seg
 $0 \to H^{0}(X,A) \to H^{0}(X,B) \to H^{0}(X,C) \xrightarrow{S} H^{0}(X,A) \to \cdots$
is exact
 $\mathfrak{O} \to A^{-} \to B \to C \to 0$
 $h^{\frac{9}{4}}(X,A) \to H^{\frac{9}{4}}(X,B) \to H^{\frac{9}{4}}(X,C) \xrightarrow{S} H^{\frac{9}{4}+1}(X,A) \to \cdots$
is exact
 $\mathfrak{O} \to A^{-} \to B \to C \to 0$
 $h^{-1}(X,A) \to H^{\frac{9}{4}}(X,B) \to H^{0}(X,C) \xrightarrow{S} H^{\frac{9}{4}+1}(X,A) \to \cdots$
 $\mathfrak{O} \to H^{0}(X,A) \to H^{0}(X,B) \to H^{0}(X,C) \to H^{1}(X,A) \to \cdots$
 $\mathfrak{O} \to H^{0}(X,A^{1}) \to H^{0}(X,B) \to H^{0}(X,C) \to H^{1}(X,A) \to \cdots$
 $\mathfrak{O} \to H^{0}(X,A^{1}) \to H^{0}(X,B) \to H^{0}(X,C) \to H^{1}(X,A) \to \cdots$
 $\mathfrak{O} \to H^{0}(X,A^{1}) \to H^{0}(X,B) \to H^{0}(X,C) \to H^{1}(X,A) \to \cdots$
 $\mathfrak{O} \to H^{0}(X,A^{1}) \to H^{0}(X,B) \to H^{0}(X,C) \to H^{1}(X,A) \to \cdots$
 $\mathfrak{O} \to H^{0}(X,A^{1}) \to H^{0}(X,B) \to H^{0}(X,C) \to H^{1}(X,A) \to \cdots$
 $\mathfrak{O} \to H^{0}(X,A^{1}) \to H^{0}(X,B) \to H^{0}(X,C) \to H^{1}(X,A) \to \cdots$
 $\mathfrak{O} \to H^{0}(X,A^{1}) \to H^{0}(X,B) \to H^{0}(X,C) \to H^{1}(X,C) \to \cdots$
 $\mathfrak{O} \to H^{0}(X,A^{1}) \to H^{0}(X,B) \to H^{0}(X,C) \to H^{1}(X,A) \to \cdots$
 $\mathfrak{O} \to H^{0}(X,A^{1}) \to H^{0}(X,B) \to H^{0}(X,C) \to H^{1}(X,A^{1}) \to \cdots$
 $\mathfrak{O} \to H^{0}(X,A^{1}) \to \mathfrak{O} \to \mathbb{O} \to$

(Note that we shall truncate 5'(x, \$) to compute H°(x, \$))

H^o(X, S) = kerS^o/o = kerS^o = Im 2 =
$$\int [X, S]$$

croct at exact at
C^o(X, S) $\int (x, s)$
(a)(2) S is soft, so the canonical resolution of soft sheaf is
an exact seq of soft sheaves $0 \to S \to C^{o}(S) \to C^{o}(S) \to \cdots$
Hence by prop we have $0 \to S[(X,S) \to C^{o}(S)(X) \to C^{o}(S)(X) \to \cdots$
is also exact. Therefore H³(X,S)=0 for $g > 0$.
(b)k(C). Note that for h: $A \to B_{J}$ it induces naturally a cochain
complex map $h^*: C^*(A) \to C^*(B)$.
Recall that $C^{o}(A)(U) = \{f: U \to \overline{A} \mid nf=1u\}$ be sheaf of discontinous
sections of \overline{J} over X.
So we define $h^{\circ}: C^{o}(A) \to C^{o}(B)$ by $h_{U}^{\circ}: C^{o}(A)(U) \to C^{o}(B)(U)$
 $\begin{bmatrix} v \to A \\ w \to a \\ w \to a \\ max seaw \end{bmatrix}$
There is a injective sheaf mor $f: A \to C^{o}(A)$ by for $A(U) \to C^{o}(A)(U)$,
 $s \mapsto \begin{bmatrix} s & 0 \\ s & 0 \\ w & 0 \\ max seaw \end{bmatrix}$
There is a injective sheaf mor $f: A \to C^{o}(A)$ by for $A(U) \to C^{o}(A)(U)$,
 $s \mapsto \begin{bmatrix} s & 0 \\ s & 0 \\ w & 0 \\ max seaw \end{bmatrix}$
We view A as subsheaf of $C^{o}(A)$ and B
a subsheaf of $C^{o}(B)$. Note that $h_{U}(A(U)) \in B(U) (h_{U}^{o}(s) = h_{U}S)$
so h^a induces a mor $h^{a}: C^{o}(A)/A \to C^{o}(B)/B$. Repeat above steps,
we have a mor $h^{a}: C^{o}(F^{o}(A) \to C^{o}(F^{o}(B))$ which is, by
definition, $h^{a}: C^{o}(A) \to C^{o}(B)$. Then we have
 $a^{a}: C^{b}(A)/F^{a}(A) \to F^{a}(B)$. Then $h^{a}: C^{o}(F^{o}(A))$
 $= f^{a}(A)/F^{a}(A) \to F^{a}(B)$. Then $h^{a}: C^{o}(F^{o}(A))$
 $= f^{a}(A)/F^{a}(A) \to F^{a}(B)$. Then $h^{a}: C^{o}(F^{o}(B))$
 $= f^{a}(A)/F^{a}(A) \to F^{a}(B)$. Then $h^{a}: C^{o}(F^{o}(A))$
 $= f^{a}(A)/F^{a}(A) \to F^{a}(B)$. Then $h^{a}: C^{o}(F^{o}(B))$
 $= f^{a}(A) \to F^{a}(A) \to C^{o}(B)$. $C^{a}(A)$
 $= f^{a}(A) \to F^{a}(A) \to C^{a}(B)$. $C^{a}(A)$
 $= f^{a}(A) \to F^{a}(A) \to C^{a}(B)$. $C^{a}(A)$
 $= f^{a}(A)/F^{a}(A) \to F^{a}(A) \to C^{a}(B)$. $C^{a}(B) \to C^{a}(B)$
Since H^a(X,A) = H^a(C^{a}(A)), thm (b)(1)(2)(3) are conclusions
in Hatcher's alg. tope.
Given $0 \to A \to B \to C \to 0$, we have $0 \to C^{a}(A) \to C^{a}(B) \to C^{a}(C)$
 $= f^{a}(A) \to C^{a}(A) \to C^{a}(A)$.

[Rmk] These properties can be used as axioms for cohomology theory, and one can prove existence and uniqueness of a cohomology theory with thoes axioms. The test part we want to focus on the computation. [Def] A resolution of a sheaf S over a space X $o \rightarrow \$ \rightarrow A^*$ is called acyclic if H¹(X, A^P)=0 for Ug>0 and p>0 [Exp] By above thm, soft resolution of a sheaf is a cyclic. Acyclic resolution of sheaves give us one way of computing the cohomology grps of a sheaf by following thm [Thm] (Abstract de Rham thm) Let S be a sheaf over X and Let 0-35-3 At be a resolution of S. Then there is a natural homo $\gamma^{p}: H^{p}(J^{r}(X,\mathcal{A}^{*})) \rightarrow H^{p}(X,\mathcal{S})$. Moreover, if $0 \rightarrow S \rightarrow A^*$ is acyclic, \mathcal{F}^{P} is an iso. Pf : · Construct YP: HP(J(X, U*)) -> HP(X, S) Common trick : Spliting a long exact seg to short exact seg. $0 \to \mathcal{A}^{\prime} \xrightarrow{i} \mathcal{A}^{\prime} \xrightarrow{i} \mathcal{A}^{\prime} \xrightarrow{i} \cdots \quad Let \ \mathcal{R}^{P} = \ker (\mathcal{A}^{P} \to \mathcal{A}^{P+1}) = Im(\mathcal{A}^{P-1} \to \mathcal{A}^{P})$ in R' J SKI SKI J Then we have short exact seg $0 \rightarrow \mathcal{R}^{P} \xrightarrow{2} \mathcal{A}^{P} \xrightarrow{i} \mathcal{R}^{P+1} \rightarrow 0$. With S.E.S., we have L.E.S. : $0 \to H^{\circ}(X, \mathcal{R}^{\mathsf{r}}) \to H^{\circ}(X, \mathcal{A}^{\mathsf{P}}) \to H^{\circ}(X, \mathcal{R}^{\mathsf{r}}) \xrightarrow{S} H^{\circ}(X, \mathcal{R}^{\mathsf{P}}) \longrightarrow \dots$ With resolution $0 \rightarrow S \rightarrow A^*$, we have $H^{P}(\mathcal{J}(X,\mathcal{A}^{*})) = \underline{\ker}(\mathcal{J}(X,\mathcal{A}^{P}) \rightarrow \mathcal{J}(X,\mathcal{A}^{P+1}))$ $\operatorname{Im}(\int(X,\mathcal{A}^{\prime})\to \int(X,\mathcal{A}^{\prime}))$ 0-> RP-> RP+1 = AP+1 >0 exact so 0→J(x, KP)→J(x, AP) →J(x, KP)→J $f(x, x^p)$ $Im(f(x,A^{r}) \rightarrow f(x,A^{r}))$ exact at first two terms. Hence $\ker(J(\mathbf{x},\mathcal{A}^{\mathsf{P}})\to J(\mathbf{x},\mathcal{A}^{\mathsf{P}+1}))$ $= \ker (S(X, \mathcal{A}^{p}) \rightarrow S(X, \mathcal{A}^{p+1}))$ = J(x, 12) de xact at S(x, 2)

Consider
$$\delta^{\circ}$$
 in L.E.S. $\delta^{\circ}: H^{\circ}(X, \mathcal{R}^{P}) \longrightarrow H'(X, \mathcal{R}^{P+1})$
$$\prod^{"}(X, \mathcal{R}^{P})$$

It induces
$$\gamma_{1}^{p}: H^{p}(J^{r}(x, A^{*})) \longrightarrow H^{r}(x, \chi^{p+1})$$

$$\begin{pmatrix} I^{r}(x, \chi^{p}) / \dots \end{pmatrix}$$

If the resolution is acyclic, $H'(X, A^{P-1}) = 0$, So in 2.2.5. S° is surj and thus Y_1^P is surj. Y_i^P is obviously inj, hence it's iso. Similarly, consider exact seq $0 \rightarrow \mathcal{R}^{P\cdot r} \rightarrow \mathcal{A}^{P-r} \rightarrow \mathcal{R}^{P-r+1} \rightarrow 0$ we obtain Y_r^P : $H^{r-1}(X, \mathcal{R}^{P-r+1}) \rightarrow H^r(X, \mathcal{R}^{P-r})$ (iso when acyclic) We define $Y_P = Y_P^P \circ Y_{P-1}^P \circ \cdots Y_2^P \circ Y_2^P : H^r(\mathcal{I}(X, \mathcal{A}^{*})) \rightarrow H^P(X, \mathcal{R}^{\circ})$ which is iso when resolution is acyclic.

[Rmk] In the proof we only use cohomology axiom and do not use sheaf property. That's an evidence for axioms are complement.

[Coro] Suppose
$$0 \rightarrow S \rightarrow A^*$$

 $\downarrow f \downarrow g$ is a home of resolutions of sheaves.
 $0 \rightarrow J \rightarrow B^*$
Then there is an induced here $H^p(\Gamma(X, A^*)) \xrightarrow{gp} H^p(\Gamma(X, B^*))$

Then there is an induced nome $H^{(J^{(X)},A^{(Y)})} \longrightarrow H^{(J^{(Y)},B^{(Y)})}$ which is, moreover, an isomorphism if f is an iso of sheaves and the resolutions are both acyclic.

Pt: Since
$$H^{P}(\Gamma(X, -)) \rightarrow H^{P}(X, -)$$
 is natural, we have
commutative diagram $H^{P}(\Gamma(X, A^{*})) \xrightarrow{\chi_{A}^{P}} H^{P}(X, S)$
 $\downarrow^{PP} \qquad \downarrow^{PP} \qquad \downarrow^{PP}$

When f is iso, fp is iso. When resolutions acyclic, rand rp are iso. S gp is iso.

[Lemma] Let R be a solt sheaf of ring and m is a sheaf of R-modules. Then m is a soft sheaf.

Pf: Assume k a closed subset of ×. Let se
$$\mathcal{M}(k)$$
. ∃open U≥k
and $\overline{s} \in \mathcal{M}(U)$ s.t. $t_{ik}^{V} \overline{s} = s$. (property of direct limit) Let $P \in \Gamma(K \cup \{k-U\}, R)$
by setting $P = \begin{cases} 1 & on \ k \\ on \ X - U \end{cases}$. Since R is soft, there exists
 $\overline{P} \in \Gamma(X, R)$ with $t_{k \cup \{k-U\}}^{V} \overline{P} = P$. \mathcal{M} is a sheaf of R -module,
so $\overline{P} \cdot \overline{s} \in \mathcal{M}(X)$. $t_{k}^{X} \overline{P} \cdot \overline{s} = P \cdot t_{k}^{X} \overline{s} = P \cdot s = s$.
 $\mathcal{M}(X) = \mathcal{M}(X)$
 $T_{k}^{Y} = \mathcal{M}(X)$
 $\mathcal{M}(K) = \mathcal{M}(K)$

[Thm] (de Rham) Let x be a differentiable mf. Then the natural mapping $I: H^{P}(\mathcal{E}^{*}(x)) \longrightarrow H^{P}(S_{\infty}^{*}(x, \mathbb{R}))$ induced by $\mathcal{E}^{*}(x) \longrightarrow S_{\infty}^{*}(x, \mathbb{R})$ is an iso. $\varphi \longmapsto \int_{c} \varphi$ is an iso.

Pf: Consider resolutions of IR in one of our examples. $Claim: \mathcal{E}^* \text{ and } S^*_{\infty} \text{ are both soft.}$ $O \rightarrow R \xrightarrow{i} \mathcal{E}^* \qquad \text{ If the claim is true, we have iso}$ $H^P(\mathcal{E}^*(X)) \rightarrow H^P(S^*_{\infty}(X, IR)) \text{ by}$ $above \quad corollary.$

• 2* is fine, so 2* is Soft.

• Show S_{∞}^{*} is soft. By cup product, we find that S_{∞}^{*} is an S_{∞}^{0} - module. Claim: S_{∞}^{*} is soft. If this claim is true, S_{∞}^{*} is soft as a module of soft sheaf. Then we show S_{∞}^{*} is soft: $S_{\infty}^{*}(U) = \{i: S_{\infty}(U) \rightarrow |R| f is C_{\infty}^{*}\} = \{f: U \rightarrow |R| f C_{\infty}^{*}\} = C_{\infty}(U, |R)$. So S_{∞}^{*} is soft. (A bit different from Gtm 65, I guess this is what Gim 65 mean)

$$[Thm](Dolbeault) Let X be a complex m.f. ThenH1(X, \Omega!) \cong \frac{\ker(\Xi^{P,2}(X) \xrightarrow{\Xi} \Xi^{P,2+1}(X))}{\operatorname{Im}(\Xi^{P,2-1}(X) \xrightarrow{\Xi} \Xi^{P,2}(X))}$$

Pf: Consider the resolution of soft sheaves:

$$0 \rightarrow \Omega^{p} \xrightarrow{i} \Sigma^{p,0} \xrightarrow{3} \Sigma^{p,1} \xrightarrow{3} \cdots \longrightarrow \Sigma^{p,n} \rightarrow 0$$

Then by abstract de Rham thum, we have
 $H^{q}(X, \Omega^{p}) \cong H^{q}(\Gamma(X, \Sigma^{p,*}))$
 $\stackrel{=}{=} \frac{\ker(\Sigma^{p,q}(X) \xrightarrow{3} \Sigma^{p,q+1}(X))}{\operatorname{Im}(\Sigma^{p,q-1}(X) \xrightarrow{3} \Sigma^{p,q}(X))}$
 $H^{q}(\Gamma(X, \Sigma^{p,*}))$ is the q-th homology grp of achain complex

Next, we let bundles play a role in de Rham thm.

[Def] Let m and n be sheaves of modules over a sheaf of commutative rings R. Let m⊗en denote the sheaf generated by presheaf U→m(U)⊗en(U) and we call sheaf m@n the tensor product of m and n.

 $\cdots \longrightarrow \mathcal{E}_{(\chi)}^{p_{q+1}} \xrightarrow{\mathcal{F}} \mathcal{E}_{(\chi)}^{p_{q+1}} (\chi) \xrightarrow{\mathcal{F}} \mathcal{E}_{(\chi)}^{p_{q+1}} (\chi) \xrightarrow{\mathcal{F}} \cdots$

 \Box

[Rmk] presheaf $U \rightarrow \mathcal{MB}_{\mathcal{R}} \mathcal{R}$ is not a sheaf. We provide a contraexample here. Let $E \rightarrow X$ be a holomorphic vector bundle with no nontrivial global holomorphic sections. We have sheaf $\mathcal{O}(E)$ by $\mathcal{O}(E)(U) = \{all holo sections of E over U\}$ We have sheaf Ξ by $\mathcal{E}(U) = \{all Clifferential functions on U\}$ $\mathcal{O}(E)$ and Ξ are sheaves of \mathcal{O} -module where \mathcal{O} is the structure sheaf Setting by $\mathcal{O}(U) = \{all holo funs on U\}$

Let {U; } be the sets of trivializing cover of X. We have $(\mathcal{O}(E) \otimes_{\mathcal{O}} \mathcal{E})(X) = \mathcal{O}(E)(X) \otimes_{\mathcal{O}(X)} \mathcal{E}(X) = 0$ (since there are no nontrivial global holomorphic sections, O(E)(x) = 0.) On the other side, $(\mathcal{O}(E) \otimes_{\mathcal{O}} \mathcal{E})(U_j) = \mathcal{O}(E)(U_j) \otimes_{\mathcal{O}(U_j)} \mathcal{E}(U_j) \cong$ $\mathcal{E}(E)(U_j) \neq 0$. Thus we have nontrivial patch of sections, if U(E) Bo E is a sheat we can glue patches of nontrivial sections to obtain a global nontrivial section, but we find there are no global nontrivial section since $(O(E) \otimes_{\mathcal{O}} E)(x) = 0$. Hence it's not a sheaf. (We define $O(E) \otimes_{\mathcal{O}} E$ the presheaf here). [Prop] (m On M) = m, On My tof: Denoie 71 the presheaf U→ m(U)@ew, n(U). shenditication doesn't change stalks, so (MOz1) = Hz Hence it suffices to show $H_{x} = m_{x} \partial_{p_{x}} \eta_{x}$ By concrete construction of stalks, $H_{\alpha} = 11 H(U) / 2$ = $\{ [(U, f)] | U \text{ open in } X, f \in \mathcal{H}(U) = \mathcal{M}(U) \otimes_{\mathcal{R}(U)} \mathcal{H}(U) \}$ By construction of tensor product = { $\mathbb{E}(U, \Xi a_i u_i ov_i) | U \subseteq X, a_i \in \mathcal{R}(v), u_i \in \mathcal{T}(U), v_i \in \mathcal{Y}(v)$ }

$$\begin{split} \mathcal{M}_{\mathbf{x}} & \mathcal{P}_{\mathbf{x}} \mathcal{N}_{\mathbf{x}} = \left\{ \sum_{i} \left[(\mathbf{U}, a_{i}) \right] \left[(\mathbf{U}, u_{i}) \right] & \left[(\mathbf{U}, v_{i}) \right] \right] \left[\left[(\mathbf{U}, u_{i}) \right] \in \mathcal{M}_{\mathbf{x}} \right] \right\} \\ & \mathcal{M}_{\mathbf{x}} & \mathcal{O}_{\mathbf{x}} \mathcal{N}_{\mathbf{x}} = \left\{ \left[(\mathbf{U}, \sum_{i} a_{i} \, u_{i} \, \boldsymbol{\boldsymbol{\Theta}} \, v_{i}) \right] \right| \left[\begin{array}{c} \mathbf{U} \subseteq \mathbf{X}, \quad a_{i} \in \mathcal{R}(\mathbf{U}) \\ u_{i} \in \mathcal{M}(\mathbf{U}), \quad v_{i} \in \mathcal{M}(\mathbf{U}) \end{array} \right\} \\ & \mathcal{O}_{\mathbf{x}} & \mathcal{O}_{\mathbf{x}} & \mathcal{O}_{\mathbf{x}} \\ & \mathcal{O}_{\mathbf$$

[Lemma] If J is a locally free sheaf of R-modules and $0 \rightarrow A' \rightarrow A \rightarrow A'' \rightarrow 0$ is a short exact seg of R-modules, then $0 \to \mathcal{A}' \mathcal{O}_{\mathfrak{g}} \mathcal{T} \to \mathcal{A} \mathcal{O}_{\mathfrak{g}} \mathcal{T} \to \mathcal{A}' \mathcal{O}_{\mathfrak{g}} \mathcal{T} \to 0$ is also exact.

Recall that there is a resolution of sheaves of O-modules over a complex m.f. X:

 $0 \to \Omega^{P} \longrightarrow \mathcal{E}^{P,0} \xrightarrow{\overline{\partial}} \mathcal{E}^{P,1} \xrightarrow{\overline{\partial}} \cdots \longrightarrow \mathcal{E}^{P,n} \longrightarrow 0$

If x admits a holomorphic bundle E, we have sheaf O(E). We've proved O(E) is locally free in the thm illustrating correspondence of S-bundles and Locally free S-sections. Exact seq tensor locally free sheaf is also exact, i.e. $0 \to \mathcal{N}^{\mathsf{P}} \mathcal{B}_{\mathcal{O}} \mathcal{O}(E) \longrightarrow \mathcal{E}^{\mathsf{P},\mathsf{n}} \mathcal{B}_{\mathcal{O}} \mathcal{O}(E) \xrightarrow{\overline{\mathcal{I}} \mathcal{O}^{\mathsf{1}}} \cdots \xrightarrow{\overline{\mathcal{I}} \mathcal{O}^{\mathsf{1}}} \mathcal{E}^{\mathsf{P},\mathsf{n}} \mathcal{B}_{\mathcal{O}} \mathcal{O}(E) \to 0$ is an exact seg.

 $[P^{rop}] \mathfrak{D}^{\mathcal{B}} \mathfrak{O} (\mathcal{O}(E)) \cong \mathcal{O}(\wedge^{\mathcal{P}} \mathsf{T}^{*}(\mathsf{X}) \mathfrak{O}_{\mathcal{C}} E)$

Pf: We should use two facts: 1, E, F be bundles over mf M. J be section sheaf, we have S(EOF) = J(E) O(F), more

https://math.stackexchange.com/questions/1857939/sections-of-tensor-bundle-are-tensor-product-of-sections details :

2. Recall that $\Omega^{p} = \ker(\Xi^{p, 0} \xrightarrow{5} \Xi^{p, 1})$, actually it's the sheaf of holomorphic differential forms of type (P,0), i.e., in local coord, $\varphi \in \mathfrak{N}(U)$ iff $\varphi = \sum_{\mu \in \mathcal{P}} \varphi_{\mathbf{I}} d z^{\mathbf{I}}, \varphi_{\mathbf{I}} \in \mathcal{O}(U)$. So $\mathfrak{N}^{e} = \mathcal{O}(\Lambda^{e} T^{*}(X))$.

With those facts, we have $\mathcal{O}(\wedge^{P}T^{*}(x) \otimes_{C} E) \cong \mathcal{O}(\wedge^{P}T^{*}(x)) \otimes_{O}^{O}(E)$ $\cong \Omega^{P} \otimes_{O} \mathcal{O}(E) .$

 $[Prop] \mathcal{E}^{P,9} \mathcal{O}_{\mathcal{O}}(\mathcal{O}(E) \cong \mathcal{E}(\Lambda^{P,9} \mathsf{T}^{*}(\mathsf{X}) \mathcal{O}_{\mathcal{C}} E).$

 $P(\mathbf{f}: \Sigma(\Lambda^{P,9} T^{*}(\mathbf{x}) \otimes_{c} E) = \Sigma(\Lambda^{P,9} T^{*}(\mathbf{x})) \otimes_{\Sigma} \Sigma(E)$ $\Sigma^{P,9} := \Sigma(\Lambda^{P,9} T^{*}(\mathbf{x})) = \Sigma(\Lambda^{P,9} T^{*}(\mathbf{x})) \otimes_{U} U(E)$ $= \Sigma^{P,9} \otimes_{C} U(E)$

) Section自行 后田住民差的决定 differniable与holo 放-次最终还是 differentiable

 $[Rmk] In \Delta \mathcal{O}_{\mu} \Box'', \Delta, \Box are \phi - m odules.$

 $[P^{TOP}] \mathcal{O}(E) \otimes_{\mathcal{O}} \mathcal{E} = \mathcal{E}(E)$

 $\mathcal{E}[E] = \mathcal{E}(E) \mathscr{G} \mathscr{E} = \mathscr{O}(E) \mathscr{O}_{\mathscr{G}} \mathscr{E}$

$$\begin{bmatrix} \operatorname{Rmk} \end{bmatrix} \ \Omega^{P}(X, E) = \underbrace{\mathcal{O}}(X, \Lambda^{P} T^{*}(X) \otimes_{c} E) = \underbrace{\mathcal{O}}(\Lambda^{P} T^{*}(X) \otimes_{E} E)(X) \\ \xrightarrow{neons} & \mathcal{O} - sections \\ \xrightarrow{neons} & \operatorname{Sheaf} \\$$

Then the long exact seg can be written as $0 \to \Omega^{P}(E) \to \mathcal{E}^{P,0}(E) \longrightarrow \mathcal{E}^{P,1}(E) \xrightarrow{\partial_{E}} \cdots \xrightarrow{\partial_{E}} \mathcal{E}^{P,n}(E) \to 0$ where $\overline{\partial} = \overline{\partial} \otimes 1$. It's exact and $\mathcal{E}^{P, \underline{q}}(E)$ are fine sheaves, so we have following generalization of Dolbeau It's thm [Thm] (Dolbeauli's +hm) Let X be a complex m.f. and let E-X be a holomorphic vector bundle. Then $H^{9}(X, \Omega^{P}(E)) \cong \frac{\ker(E^{P,9}(X,E) \overline{\Sigma} E^{P,9+1}(X,E))}{\operatorname{Im}(E^{P,9+1}(X,E) \longrightarrow E^{P,9}(X,E))}$ Céch cohomology with coefficients in a sheaf This section has similar process as in defining singular homology. Let X be a topo space, F be a sheaf of ab grps on X. Let 21 be a covering of X by open sets. [Def] (9 - simplex). A <u>9</u>-simplex o is an ordered collection of 9+1 sets of the covering 21 with nonempty intersection, i.e., $\sigma = (U_0, \dots, U_q)$ with $\bigcap_i U_i \neq \emptyset$. • We call the set $\bigcap_{i=1}^{i} U_i =: |\sigma|$ the support of the simplex σ . •A <u>q-cochain</u> of 21 with coefficients in F is a mapping f which associates to each q-simplex $\sigma = f(\sigma) \in \mathcal{F}(|\sigma|)$. • Let $C^{q}(\mathcal{U}, \mathcal{F})$ denote the set of q-cochains, which is an abelian grp. Define coboundary operator S: C⁹(U,F) → C⁹⁺¹(U,F) by $\delta f(\sigma) = \sum_{i=0}^{3+1} (-1)^i + \frac{1}{|\sigma|} f(\sigma_i)$ where $f \in C^2(\mathcal{U}, \mathcal{F})$, σi=(Ub,···, Ûi, ···, Ug+1) and tion is the sheaf restriction. [Prop] 1. S is a grp homo 2. $\delta^2 = 0$ 3. We have cochain complex $C^{*}(\mathfrak{U}, S) \coloneqq \left[C^{\circ}(\mathfrak{U}, S) \rightarrow \cdots \rightarrow C^{\mathfrak{g}}(\mathfrak{U}, S) \xrightarrow{\mathfrak{s}} C^{\mathfrak{g}+1}(\mathfrak{U}, S) \rightarrow \cdots \right]$

$$\begin{bmatrix} \text{Def} \end{bmatrix} \text{ Cohomology of cochain complex } (^{*}(\mathcal{U}, S) \text{ is the Cech}\\ \text{Cohomology. } Z^{2}(\mathcal{U}, S) := \ker S, B^{2}(\mathcal{U}, S) := \operatorname{Im} S, \text{ and}\\ H^{2}(\mathcal{U}, S) := H^{2}((^{*}(\mathcal{U}, S)) = Z^{2}(\mathcal{U}, S)/B^{4}(\mathcal{U}, S) \end{bmatrix}$$

 $[Prop] If m is a refinement of U, then there is a natural grp homo <math>\mathcal{M}_{m}^{\mathcal{U}}: H^{9}(\mathcal{U}, \varsigma) \longrightarrow H^{9}(\mathcal{M}, \varsigma) and$

[Prop] If U is a covering s.t. $H^{9}(101, S) = 0$ for $9 \ge 1$ and all simplices σ in U, then $H^{9}(x, S) \cong H^{9}(U, S)$ for all $9 \ge 0$ and we call U a Leray Cover.

[prop] If X is paracompact, U is locally finite covering, and S is a fine sheaf over X, then H⁹(U,S) = 0 for 9>0