\overline{P} Ref: Gtm 65. $Sheaf$ theory Big picture: Sheaf theory is a method to obtain global information from local information. Motivation: Most problems can be solved without sheaf theory. But without
sheaf theory makes things hard to comprehence. presheaves and sheaves [Def] A presheat F over a topological space x is (a) An assignment to each nonempty open set UCX of a set FCU) with elements called sections. (b) A collection of mappings (called restriction homomorphisms) $\mathcal{U}\mathcal{V}:\mathcal{F}(\mathsf{U})\longrightarrow\mathcal{F}(\mathsf{V})$ for each pair of open sets U and V s.t. VCU satisfying (1) $\tau_U^U = id_U$ (2) For $U=V=W-TU$ $LDP[JCMor.$ of presheaves) Let F, G be two presheaves over X . A morphism $h: \mathfrak{T} \rightarrow G$ is a collection of maps $h_V: \mathfrak{P}(U) \longrightarrow \mathfrak{G}(U)$ for each open set U in X s.t. the following diagrom commutes $|\nabla (U)| \longrightarrow |G(U)|$ $\begin{array}{c|c|c|c|c} \hline \text{12} & \text{13} & \text{14} \\ \hline \text{15} & \text{15} & \text{16} \\ \hline \text{16} & \text{17} & \text{18} \\ \hline \text{17} & \text{18} & \text{19} \\ \hline \text{18} & \text{19} & \text{19} \\ \hline \text{19} & \text{$ VCUCX $I(V) \longrightarrow G(V)$ I is said to be a subpresheaf of 5 if the maps hy above are inclusions. ERmk] Roughly speaking, presheaf over X has three layers.

Hom sets between 4(U) and 7(V) Hom (HUI, HVI) third layer Second layer **FWI** FIV) each open set a ssign a set F(.) First layer open sets in X $V^{-+}V$

When $U \subseteq V$ and we consider $\overline{\mathbf{u}}$ リニレ Sheat of functions, Hom (7101, 710) $Hom(H(U), F(V)) = \{ *y$ リンソー contains inclusions. O/W

Then mors of presheaves should presence this 3 leyers. $4, 6$ be two presheaves over X. A mor $h: 4 \rightarrow 6$ is assign each element an element in the same loyer compatitively.

$$
+ hird \text{ [culer - Hom (f(u), f(v)) \rightarrow Hom (f(u), f(v))}
$$

Second layer h_{U} : $\mathcal{F}(U) \longrightarrow G(V)$

First Layer $U \longmapsto V$

is can be simplified to $h:\tau \rightarrow 6$ are those maps satisfying: be just a family of $\mathcal{F}(U) \xrightarrow{h_U} \hat{G}(U)$ $h_U: \mathfrak{T}(U) \rightarrow \mathfrak{T}(V)$ because the assignment at first and third $\begin{array}{c} r_v \\ r_v \end{array}$ layer is fixed. $\mathcal{F}(v) \xrightarrow{h_v} G(v)$

*Actually, I belive presheaf over X is a 2-cat and mors are 2 - functors. (to check it's a 2-cat is so awful and seems not very neeful at this stage, so it's fust a guess. But it's easy to prove the second and third layer combine satisfying conditions to form α 1-cat).

I think this "category version" or just "layer version can explicity show what data presheaves contain.

[Rmk] When we endow more structure to T(U), e.g. F(U) is a group, all mors in def should be grp homo.

 \Box DefJ A presheat F is called a sheaf if for every collection U_i of open subsets of x with $U = UU$; then x satisfies $\{Axiom S_i : \text{ If } s,t \in \mathcal{F}(U) \text{ with } \text{ if } U_i(s) = \text{ if } U_i(t) \text{ then } s = t. \}$ $4Axiom S_2$: If $Si 4(U_i)$ and for $U_i \cap U_j \neq \emptyset$ we have $T_{U_1}U_{U_2}(s_i) = T_{U_1}U_{U_2}(s_j)$, for Vi, j

then there exists an $s \in \mathcal{F}(U)$ s.t. $\mathcal{F}'_{U_i}(s) = S_i$ for Vi.

[Rmk] For "good" patches of local functions, we can glue them to a global one. A xiom S2 convices existence and Axiom S, Convinces uniqueness. LRmk] mors of sheaves are the same as mors of presheaves. [$ExpJ$ (presheaf and not a sheaf) $X = \{a, b\}$ with discrete topo. $T(a) = T(b) = [K]$ and restrictions are all zero. Then it violates Axiom S1. Then what's the case on m.f.? What's presheaves on m.f.? I dea: S-structure, tells you what's S-functions on M. M K (manifold) Construct sheaves of S-functions. \mathbf{z} Let S = differentiable ϵ , real-analytic A , or complex-analytic O . C" functions teal-analytic functions holomorphic functions IDef] (S-structure) An S-structure Su on a K-manifold M is a family of K-valued continuus functions defined on the open sets of M s.t. (1) $\forall \uparrow \in M$, 3 open n.b.h. $U \ni \uparrow$ and a homeo $U \rightarrow U' \subseteq K''$ S.T. V open VCU , $f:V \rightarrow k \in S_M$ iff $f \cdot h^{-1}: h(V) \rightarrow k \in S(h(V))$ (2) If $f:U\rightarrow K$ where $U=UVi$ and U_i open in M, then $f \in S_m$ iff $f|_{U_i} \in S_m$. (e.g. $U = \bigcup_{p \in U} U_p$, U_p is open n.b.h. of p then
[M, S_n) is a S -manifold. We can use α in def) [Def] $C_x(0) :=$ conti functions $x \to k$, it's a sheaf of X. $[Def](Structure \ sheaf of the m.f.)$ Let $X be a S-manifold.$ $S_{x}(U) :=$ the S -functions on U . defines a subsheaf of C_{x} Ex, Ax, \mathcal{O}_X are sheaves of differentiable, real-analytic and holomorphic functions on a mf X. ERmk] One may think S-structure is just a sheaf. That's wrong. S -structure just tells you what's S -function on the m.f.. S -structure is an instruction book, then we call tell shenf of S-functions

Presheaf of modules occur very often in the world of m.f. We'll see tight relationship between sheaf of modules and S-bundles.

[Def] R is a presheaf of commutative ring and m is a presheaf of abelian groups, both over a topo space x . We say m is a presheaf of R-modules if

(1) For each open $U \subseteq X$, $\pi(U)$ is a $\mathbb{R}(U)$ - module. (2) For each $V^{\text{gen}}_{\text{cm}}U^{\text{open}}_{\text{cm}}$ y de $R(U)$

$$
m(U) \xrightarrow{d^{\circ} \rightarrow} \mathcal{W}(U)
$$

\n
$$
{}^{\prime}m_{V}^{U} \downarrow \qquad \qquad \mathcal{W}(U)
$$

\n
$$
m_{V}^{U} \downarrow \qquad \qquad \mathcal{W}(V)
$$

\n
$$
m_{V}^{U} \downarrow \qquad \qquad \mathcal{W}(V)
$$

(compatibleness of module structure and restriction in sheaf structure)

If m is a sheaf, then we say m is a sheaf of R -modules.

[Rmk]

sheaf $m \rightarrow \infty$

[Exp] Let E->X be an S-bundle. Define a presheaf S(E) by setting $S(E)(U) = S(U, E)$, sections of E over U for $U \leq K$, together with natural restrictions. S(E) is called the sheaf of S -sections of the vector bundle E . $S(E)$ is a sheaf of S_x -modules for an S-bundle $E \rightarrow X$. For example, we have sheaves of differential forms \mathcal{E}_x^* on a differentiable m.f., or the sheaf of differential forms of type $(P, 5)$, $\sum_{x}^{P, 2}$ on a complex m.f. X.

[Exp] Let $\mathcal{O}_\mathfrak{C}$ denote the sheaf of holo functions in C. Let I denote the sheaf by setting $\begin{cases} \mathcal{J}(U) = U_L(U) \\ \mathcal{J}(U) = \{ feQ(U) | fe^{-\delta}\} \end{cases}$ if o \notin U if oe

T is a sheaf of O_a - modules.

[Def] Let X be a complex m.f. with structure sheaf \mathcal{O}_X . Then a sheaf of O_x -modules is called an analytic sheaf. [Rmk] we introduce analytic sheaf because it ocurrs frequently. The rest of this part we focus on the relationship between bundles and sheaves. Just as in algebraic geometry, we hope to find a correspondence between floundles over X3 and $\frac{1}{3}$ sherves over x $\frac{1}{3}$. Clearly, to make correspondence holds. We need put restrictions on bundles and sheaves, i.e., the question is to find ???" in the following cand prove the bijection

 $\{33\}$ bundles over $x3 \xrightarrow{1:3} \{33 \}$ sheaves over $x3$ [Def] Let R be a sheaf of commutative rings over a topological p -terms $space \times$.

(a) Define R, for p>0, by setting $R'(U) = R(U)\oplus ... \oplus R(U)$ and natural restriction. R^P is a sheaf and we call R^P the direct sum of R. (p=o corresponding to 0-module)

(b) If M is a sheaf of R-modules s.t. M $\approx R^{\circ}$ for some p30 then M is said to be a free sheaf of modules.

c) If M is a sheaf of R-modules s.t. each x EX has a n.b.h. U s.t. $m|_U$ is free, then m is said to be locally free. $LRmk$] $m|_U$ is the restriction of sheaf m , the def can be guessed easily and we left as an exercise.

 $LExp1$ Let m be the locally free sheaf of S -module

where S is the structure sheaf of S -manifold (X, S) . Then for each $x \in x$, I a n.b.h. U of x s.t. $m|_U \simeq (S|_U)^T$. To unwrap the equation, for each open $V \subseteq U$, we have $m|_U (V) \cong (S|_U)^{\prime\prime}(V)$, i.e., $\pi |_U V \cong S(V)^{\prime\prime} = \{ (9, ..., 9, 1), 9, 6, S(V)\}$ = ${f: V \rightarrow k^{r} | \text{write } f : (s_{v} \cdots s_{r}) \over 9: 6 \leq (v)}$

Hence, locally free sheaf of 3 -module means for each $x \in x$ there exists a n.b.h. U_x of x s.t. $\pi(U)$ are vector-valued
function with each component a S -function.

 $CThm$] Let $X=CX, S$) be a connected $S-m.f.$ There is a bijection { iso classes of S-bundles over X } $\xleftarrow{1:1}$ iso classes of locally free sheaves }
(of S-modules over X

 $Pf: \Rightarrow$ Given a S -bundle $E \rightarrow X$, we need to construct a locally free sheaves of S -modules over x where S is the structure sheaf. We claim sheaf S(E) is the corresponding locally free sheaf of S-modules. It suffices to show SLE) is locally free. By local triviality of bundle E , for any $x \in X$ there exists a n.b.h. U of x , s.t. $E|_U \subseteq U \times k^r$. Key: Pass this iso to sheaf. $Claim: S(E)|_U \cong S(Uxk^r)$ Indeed, for VV open in U, we have $S(E)|_{U}(V) = S(E)(V) = S(V, E) = S(U, U \times K') = S(U \times K')(V)$ Thus $S(E)|_{U} = S(U \times K^{r})$.

 $Claim: S(U\times K^{r}) \cong S|_{U}\oplus \cdots \oplus S|_{U}$

It suffices to show $S(U\times K^{r})(V) \cong S|_{U}\oplus \cdots \oplus S|_{U}(V)$ for any $V \subseteq U$. $S(Uxk')$ $V) = S(V, Uxk^{r}) = \left\{ \int_{0}^{r} V \rightarrow Vxk^{r} | g: V \rightarrow k^{r}, \text{write } a_{S} \right\}$
 $Y \rightarrow Cx, g(y) | g_{1}, ..., g_{r}$, satisfying $g_{i} \in Sh$

$$
\begin{array}{ccc}\nS(U \times K^r)(V) & \longleftrightarrow & S|_U \oplus & \cdots \oplus & S|_U(V) = & S(V)^+ \\
\downarrow & & \downarrow & & \downarrow \\
\downarrow & & \longmapsto & (g_1, \cdots, g_r) = g\n\end{array}
$$

 $f: V \rightarrow V \times K$

It's clearly an iso.

E Given a locally free sheaf of S-module L, we w.t. construct a S-bundle over X.

Since L is locally free, we can find an open covering {va} of x and a family of sheaf iso $g_a: L|_{U_a} \hookrightarrow S^*|_{U_{ad}}$
CRmk] + doesn't depend on Ua since X is connected. Define $g_{\alpha\beta}:S^+|_{U_\alpha\cap U_\beta}\to S^+|_{U_\alpha\cap U_\beta}$ by $g_{\alpha\beta}=g_\alpha g_\beta^{-1}$ Since g_d , g_g are sheaf maps, g_{ag} is also a sheaf map. Sheaf map $g_{\alpha\beta}$ is a family of mors, one of them is $(948)_{U_{a}\cap U_{\beta}}$: $S^{\dagger}|_{U_{a}\cap U_{\beta}}(U_{a}\cap U_{\beta}) \longrightarrow S^{\dagger}|_{U_{a}\cap U_{\beta}}(U_{a}\cap U_{\beta})$ $S(u_{a}\cap u_{\beta})^{r}$ $S(u_{a}\cap u_{\beta})^{r}$

Claim: The sheaf map gap is equivalent to the map $\theta_{\alpha\beta}: U_{\alpha}\cap U_{\beta} \longrightarrow GL(1,k)$

Indeed, $S(U_{a}\cap U_{\beta})^{\dagger} = \{ (g_{1}, ..., g_{r}) | g_{i} \in S(U_{a}\cap U_{\beta}) \}$ is a vector of functions. We can also view it as a vector-valued map. $S(U_a \cap U_\beta)^T = \left\{ f: U_a \cap U_\beta \longrightarrow k^r \mid f \cap f = (9, (x_1), ..., y_r(x_l)) \mid g_i \in S(U_a \cap U_\beta)\right\}.$ Hence, $(948)_{U_{d}\cap U_{\beta}}$: $S(U_{d}\cap U_{\beta})^{\dagger}$ > $S(U_{d}\cap U_{\beta})^{\dagger}$ $Lf:U_{d}\cap U_{\beta}\rightarrow k^{r}J\longmapsto [h:U_{d}\cap U_{\beta}\rightarrow k^{r}J]$

i.e., $(9_{4\beta})_{U_{4}\cap U_{\beta}}$: $U_{4}\cap U_{\beta}$ \longrightarrow $G_{L}(r,k)$
 \longrightarrow $9_{4\beta}(x)$ $s.t.$ $h(x) = 9$ ag (x) $f(x)$ Then $(g_{a\beta})_V = (g_{a\beta})_{U_a \cap U_\beta}$, So 3 a map $g_{dg}:U_d\cap U_B\longrightarrow GL(r,k)$ equivalent to the original sheaf map $g_{2\beta}$.

Let $\widetilde{E} = U \cup_{\alpha} x k^{T} / n$ where α is $(x, 3) \sim (x, 9)$ $U_d \wedge U_\beta \pm \phi$ The trivialization of \widetilde{E} is [Uaxk^r] $\approx U_4 \times k^r$. Since $g_{ab} - g_{ab} = g_a g_a^{-1} g_a g_c^{-1} = g_a g_c^{-1} = g_{ab}$, g_{ab} are transition functions for vector bundle \widehat{E} .

The correspondence doesn't depend on representation of iso classes. Then let's check it's a bijection.

$$
E \mapsto S(E) \mapsto \widetilde{E} = U U_d \times k^7/\sim (x, \xi) \sim (x, g_{d,\xi} \xi) \quad where
$$

$$
U_d \text{ is the triviality of sheaf } S(E)
$$

By construction, Un is also the triviality of bundle E. Hence they're the same.

 $S(E) \mapsto \widetilde{E} \mapsto S(E)$

trivialization on U_d trivialization

of $S(E)$.

[Rmk] How bundles and locally free sheaf of S-module related? We only consider construction of a bundle from the sheaf. To construct a bundle, we need to glue $\{U_a \times K\}$, i.e., let $E=11$ Uxk/ So we only need to consider how to glue, i.e., what's equivalence relation \sim ? The following picture shows that to glue two trivialization U_4 xk^r and U_8 xk^r, we only need to assign each $x \in U_4 \cap U_8$ an element in $G(r, k)$, which is an outomorphism on k^r .

 $\begin{array}{lll} k^r \{ \begin{array}{lllllllllllll} \end{array} & \begin{array}{lllllllll} \end{array} & \begin{array}{lllllllll} \text{for } & \text{seU}_a \cap \bigcup_{\beta} \\ k^r & \text{to} \quad a & \text{fiber.} \end{array} & \begin{array}{lllllllll} \end{array} & \begin{array}{lllllllll} \text{if the equivalent to give} \\ \text{on } & \text{is} & \text{fif } \neg & \text{hif} \end{array} & \begin{array}{lllllllll} \text{then we can glue two} \\ \end{array}$ for $x \in U_A \cap U_B$, it suffices to glue two fibers fibers by $(x, f) \sim (x, g, g)$.

 $\partial_{\alpha\beta}$: Ua Λ Up \rightarrow GL[+,k) exactly plays this role. \Box We'll end this part by introduce the generalization of locall

free sheaves. This generation can even be defined on complex m.f. with singularities - complex spaces. An analytic sheaf on a complex mf. X is said to be coherent if for each $x \in X$ there is a n.b.h. U of x s.t. there is an exact seguence of sheaves over U, $O^{\rho}|_U \rightarrow O^{\rho}|_U \rightarrow F|_U \rightarrow 0$ for some p and 9. More detailed can be see in Gathmann's algebraic geometry.

Resolutions of sheaves

Motivation:
A sheaf on X is a carrier of localized information about the space X. To get global information, we need to apply homological alg to sheaves. In this section we'll do the prework.

CDef] An étale space over a topo space X is a topo space Y together with a continuus surj mapping $n:Y \rightarrow X$ s.t. n is a local homeo. [Exp] CRelationship between bundles) Let $n:F \rightarrow x$ be a bundle over X. Then surj map $\pi: E \to X$ locally is $\pi|_U: U \times K^r \to U$ is a homeo since k^{r} is contractible.

From the example, étalé space is a generalization of bundles. So
we can also define sections for étale space.

LDef] A section of an étale space Y "> X over an open set USX is a continuous map $f: U \rightarrow Y$ s.t. $\pi \circ f = id_U$. The set of sections over U is denoted by $\Gamma(U,Y)$.

Question: Given a presheaf F over x , can we construct an étale space $\widetilde{T} \longrightarrow X$ associated to T ? The answer is yes and we have: [Siogan] étalá space associated to presheaf is the union of stalks.

 $LDefJ(stalk)$ let F be a presheaf over X. Let $T_x := \lim_{x \in D} F(U)$ w.r.t. restriction maps $\{r\gamma\}$. We call $\mathcal{F}_{\mathbf{x}}$ the stalk of τ at \mathbf{x}

 $CHm kJ$ The direct sum $T_{\mathbf{x}} := \lim_{x \in U} F(U)$ means there are $\{F_{\mathbf{x}}, F_{\mathbf{x}}^U \mid U \ni x \}$, $F(U)$
 F_X^V G_X^V G_Y^V for any $x \in U, V$ and for each commutative S_{1}

diagram $F(U) \xrightarrow{4} F(V)$
 $h_V \rightarrow W \swarrow h_V$ \rightarrow there exists unique $g: \mathcal{F}_x \rightarrow W$ $F(U) \xrightarrow{\Uparrow V} F(V)$ s.t. the new diagram commutes r_x^0 and r_y^0 for $4x - 3w$ ERmk] If the structures are preserved by direct sum $\lim_{x \to 0}$, then \mathcal{F}_x inherent this structure. For instance, if $F(u)$ is abelian group or commutative ring, then so is F_x for xeU .

 $LDef]$ Consider data of the direct sum $Y^U_* : F(U) \longrightarrow F_*$. If $s \in F(U)$, we call $s_{\infty}:= \Upsilon_{\infty}^{U}(s)$ the germ of s at ∞ and s is called a representative for the germ sx.

ERmk] Presheaf v.s. Stalk v.s. Germ. F_{x} $F s_{x}$

If we consider F(U) is a set of maps presheaf valued at $U \xrightarrow{\lambda} T_{\underline{v}}$ stalk $\{U \rightarrow$ target space } then we have: target of $\begin{bmatrix} 5 \\ 1 \\ 1 \\ 2 \\ 3 \\ 4 \end{bmatrix}$ sx stalk T_{α} each town \int_{a}^{s} \mapsto s x ∞ germ representative for the germ If $S(x) = S'(x)$ then $S_x = S'_x$.

[Construct ion] Let $\widetilde{\tau}$ = $\bigcup_{x \in X} \tau_x$, and let $\pi: \widetilde{\tau} \to X$ by sending points in F_x to x. To make F an étale space, all remains is to give € a topology and check π : F > X is a local homeo.

For $x \in X$, $key: Endow$ topo of $x = 5$ by topo of x . Consider open $m.hh. U \underset{T}{\Leftrightarrow}$ SSE FIUI Fortunately, we can find a section so move U to 7 and let the image in 7 be open. F_3 $\left[\left[\begin{array}{c|c} 1 & 2 \\ 1 & 2 \end{array}\right]\right]$ $\left[\begin{array}{c|c} 2 & 3 \\ 5 & 1 \end{array}\right]$ The section is easily find when we draw the left picture. For $s \in F(U)$ Million U Let $\widehat{s}: U \longrightarrow \widetilde{\mp}$, $x \mapsto s_{x}$. Stalks parametrized S ince $\pi \circ \tilde{S}(\infty) = \pi(S_x) = x$, so $\pi \circ \tilde{s} = id$ meaning by points in $U\Sigma^{n}$ x that 5 is a section, i.e, π is local bijection $\Im(U) = \{S_x | x \in U\}$ In picture, it means So bijective to all in

Let $\{S(U) | U \stackrel{\text{open}}{=} X, s \in F(U) \}$ be a basis for the topo of \tilde{F} . Then $\pi|_{\mathfrak{z}_m}$ and its inverse \tilde{s} are both conti, making π a local homeo. [Exp] If the presheaf has algebraic properties preserved by direct limits, then the étalé space $\tilde{\tau}$ inherits these props. For instance, suppose F is a presheaf of abelian grps. O Each stalk Fx is an ab grp. **4)** Let $\tilde{\tau} \circ \tilde{\tau} = \{ (s, t) \in \tilde{\tau} \times \tilde{\tau} \mid \pi(s) = \pi(t) \}$ \begin{cases} i.e., s, t lie in same stalk τ_x) Define $\mu: \tilde{\tau} \circ \tilde{\tau} \to \tilde{\tau}$, $(s_x, t_x) \mapsto s_x - t_x$. It's well-defined since Sx, tx E Fx which is an ab grp. U is a contimap, indeed, for h E F(U), $\pi(v)$ is an open set in $\tilde{\tau}$. Since he $\tilde{\tau}(v)$ which is an ab grp, $\exists s.t$ in F[U] s.t. $h = s-t$. $\overline{h}(U) = \overline{s-t}(U) = \{ (s-t)_x | \alpha \in U \} = \{ s_x - t_x | \alpha \in U \}$ So the inverse $\mu^{\cdot\cdot}(\widetilde{h}(U)) = \{(s_x, t_x) | x \in U\} \subseteq \widetilde{f} \circ \widetilde{f}$, i.e., $\widetilde{\xi}(U) \circ \widetilde{\mathfrak{t}}(U) = \left\{ (a,b) \in \widetilde{\mathfrak{s}}(U) \times \widetilde{\mathfrak{t}}(U) \mid \pi(a) = \pi_{ab} \right\}$ $= \{ (s_x, t_x) | x \in U \} = \mu^{-1}(\tilde{h}(U)).$ $S \circ \mu^{-1}(\tilde{h}(U)) = S(U) \circ \tilde{t}(U)$ is open in $\tilde{\tau} \circ \tilde{\tau}$. 3 Γ (U, $\widetilde{\tau}$) is an ab grp under pointwise addition, i.e., for \tilde{s} \tilde{t} \in $\Gamma(U, \tilde{\tau})$, \tilde{s} - \tilde{t} (x) = $\tilde{s}(x)$ - $\tilde{t}(x)$, $\forall x \in U$. Since 5- E is given by compositions: $U^{(\S,t)}$ $\tilde{\tau} \circ \tilde{\tau} \xrightarrow{\mu} \tilde{\tau}$ $\begin{array}{ccccc} s & s & -\tilde{t} & s & \text{const.} \end{array}$ $x \mapsto (s_x, t_x) \mapsto s_x-t_x$ Then we want to do the invers - given an étale space, we
want to associate it a sheaf. The natural choice is $S(-, \tilde{r})$,
the sheaf of sections of $\tilde{\tau}$.

 $LDefJ$ Let F be a presheaf over a topo space X and let F be the sheaf of sections of the etale space $\tilde{\tau}$ associated with τ . Then we call $\widetilde{\tau}$ is the sheaf generated by $\widetilde{\tau}$.

[Rmk] Sheafication is take sheaf of sections of étalé space. Étalé space is
a good way pass from presheaf to sheaf.

Question: What's relationship between F and \overline{F} ? Let's find mors between them first. There is a presheaf mor $\tau: \tau \longrightarrow \tilde{\tau}$, with $\tau_U : \mathcal{F}(U) \longrightarrow \mathcal{F}(U) = \Gamma(U, \mathcal{F})$, $\tau_U(s) = \tilde{s}$. When τ be a sheaf, we have:

 $LThml$ If T is a sheaf, then $\tau \colon T \to \overline{T}$ is a sheaf iso. $P\{:\text{It suffices to show } U: F(U) \longrightarrow \overline{T}(U) = \Gamma(U) \neq 0 \}$ is bijective. Show τ_v is inj .: Suppose a, b ϵ f(U) s.t. $\tau_v(a) = \tau_v(b) \in \Gamma(v, \tilde{\tau})$. $T_{U}(a) = \tilde{a}: U \longrightarrow \tilde{F}$ with $\tilde{a}(x) = a_{x} = T_{x}^{U}a$ where $T_{x}^{U}: F(U) \longrightarrow F_{x}$ is the data of $\lim_{x \in U}$. Hence $T_U(a) = T_U(b)$ means $T_X^U a = T_X^U b$ for all $x \in U$. Fact: For direct limit $A_i \xrightarrow{f_i A_j} A_j$, given any $x_1, x_2 \in A_i$ with $f_i(x_i) = f_i(x_i)$, there exists j s.t. $f_{ij}(x_i) = f_{ij}(x_i)$. $\begin{bmatrix} x_i & y_i \\ f(u) & f(u) \end{bmatrix}$ Hence, there exists open set $\int_{\mathbf{x}} dx$, s.t. $\int_{\mathbf{x}}^{U} d = \int_{\mathbf{x}}^{U} b$. $U = \bigcup_{x \in U} V_x$, $\vdash v_x \alpha = \vdash v_x \beta$ means $a = b \in \mathcal{F}(U)$ by axiom s. ct sheaf. $Show$ τ_V is surj.: τ_V : $\tau(V) \rightarrow \tilde{\tau}(V) = \Gamma(V, \tilde{\tau})$. Let $\sigma \in \Gamma(0, \tilde{\tau})$. Pick $x \in U$, we have $\sigma(x) \in \mathcal{F}_x$. By direct $limit$ property, there exist a n.b.h. V 3 x and $s \in T(V)$, s.t. $f'_xS = \sigma(x)$. Since $f'_xS = S_x = \overline{S(x)} = \overline{L_V(s)}(x)$, we have direct limit $\tau_v(s)(x) = \sigma(x)$. σ and $\tau_v(s)$ are sections of étale two sections of étalé space agree at one point will
agree at a n.b.h. So there exists a n.b.h. w of x , $VDEL$ 3*i* and $ACA_i-S_iT. F_iA_i=b$

 $S.1.$ $\sigma|_W = \sigma_V(S)|_W = \sigma_V(r_W^2 S)$, the last equation is because

$$
\tau
$$
 is a sheaf mapping: $T(V) \xrightarrow{\tau_V} \overline{T}(V)$
 $T'(W) \xrightarrow{\tau_W} \overline{T}(W)$
 $T'(W) \xrightarrow{\tau_W} \overline{T}(W)$

The above process can be done for any $x \in U$, hence we can find an open cover $\{U_i\}$ of U and $s_i \in \mathcal{F}(U_i)$ s.t. $\sigma|_{U_i} = \tau_{U_i}(s_i)$ C Replacing w to U_i and T_w s to si \rightarrow

We want to find $s \in T(U)$ s.t. $T_U(s) = \sigma$, i.e. $T_U(s)|_{U_i} = \sigma|_{U_i} = T_U_i(s_i)$ So it suffices to find se $F(U)$ s.t. $T_U(s)U_i = T_U_i(s_i)$. Play same trick of commutative diagram:

 $F(U)$ $\frac{\tau_{U}}{\tau_{U}}$ $\bar{F}(U)$ Γ \cup $\Big\}$ $\Big\}$ $\Big\}$ $\Big\}$ $\Big\}$ $\Big\}$ $\Big\{$ $\Big\}$ $\Big\}$ we obtain Tulsslui = Tui(+Uis) for any sef(u) $F(U_i) \longrightarrow F(U_i)$

So we suffices to find $s \in F(U)$ s.t. r_U , $s = s_i$. It's easy to find s by glueing. [Unly ($\tau_{\nu_i n u_i}^{U_i}$ s;) = $\sigma I_{\nu_i n u_j}$ = $T_{\nu_i n u_j}$ ($\tau_{\nu_i n u_j}^{U_i}$ s;) and $T_{U_i \cap U_j}$ is injective, we have $T_{U_i \cap U_j}^{U_i} S_i = T_{U_i \cap U_j}^{U_j} S_j$. Since τ is a sheaf and $U = U/U$;, there exists se FLU) s.t. TU . (s) = S; By
above analysis, we complete the proof.

[Rmk] For a sheaf F , find étalé space \tilde{F} and then take $\tilde{F} = \Gamma(-, \tilde{\tau})$. The thm tells you $F \ni F$, so F contains inf. (information) of F . $\widetilde{\tau}$ contains inf. of $\widetilde{\tau}$, so $\widetilde{\tau}$ contains inf. of τ . But $\widetilde{\tau}$ is constructed from I, so I also contains inf. of F. In conclusion, the étalé space contains same amount inf. as sheaf F — hence, a sheaf is very
often defined to be an étalé space with algebraic structure along its
fibers. But when we encounter presheaf, the associated étalé space is an auxiliary construction.

 LRm k] For sheaf F , we may not distinguish F and \tilde{F} , i.e., we may identify two notations $F(U)$ and $\Gamma(U, \tilde{\tau})$ in some cases.

 $[Rmk]$ Relationship between $\mathcal{F}, \tilde{\mathcal{F}}, \overline{\mathcal{F}}$.

 F_x
 \widetilde{F} \cong $S(v) = \{ S_x | x \in U \}$
 \widetilde{F} \cong $F(v)$
 $\widetilde{F} = S(v) = \frac{1}{2}$

 $\frac{211}{111}$

[Slogan] stalks remain unchanged by sheafication

$$
\overline{r}_x = \lim_{x \in U} \Gamma(U, \tilde{\tau}) = \lim_{x \in U} \Gamma(U, \bigcup_{y \in X} \tau_y) = \tau_x
$$

[Construction] We've known $F_x = \frac{lim}{xe^{u}}$ $F(U)$. Actually there is a concrete construction for F_x , that is : $F_x = \frac{11}{100}$ $F(U)$, where $(f, V) \sim (g, w)$ if f there is an open act S $V \cap W$ s.t. $f'' + f = f''' + g$.

- 1. Given a sheaf mor $\varphi: \mathcal{F} \to \varphi$, it induces a stalk mapping $\varphi_x: \mathcal{F}_x \to \varphi_x$
by φ_x [cf.U)] = [φ_v (f), U] where [.] means equivalence class.
- 2. Let $\varphi: \tau \to \varphi$, $\psi: \tau \to \varphi$ be sheaf mors. Then $\varphi \circ \psi$ iff $\varphi_x \circ \psi_x$ for all $x \in X$.
- 3. $ker(\varphi_{\alpha}) = (ker \varphi)_{\alpha}$

More det ails: https://web.ma.utexas.edu/users/slaoui/notes/Sheaf_Cohomology_3.pdf

The rest part is about exactness in homological algebra. [Det] Let \mp , G be sheaves of abelian grps over space x with g a subsheaf of \mp . Let 2 be the sheaf generated by the presheaf $U \mapsto \frac{\pi (U)}{9}$ Then a is called the quotient sheaf of τ by θ and denoted by τ /g.

 $LRmk$] 2 is the sheafication of the presheaf $U \mapsto \frac{\tau(U)}{6U}$, hence, $Q(U) = F/g(U) + F(U)/G(U)$.

 L Construction] Let's construct a natural sheaf surjection $\tau \to \tau/g$. One may think it's surj projections $\tau(w) \to \tau(w)/g(w)$, but note that $\frac{f}{f}(f(u)) + \frac{f(u)}{f(u)}$, so there still remains some work. Denot H be the presheaf $U \mapsto F(U)/G(U)J_{U}$. Consider the presheaf map $\tau : \tau \longrightarrow H$ with τ_U : $F(U)$ \rightarrow $F(U)/_{G(U)}$. It induces **a map between stalks** $\tau_x: \tau_x \rightarrow \tau_x$ by going to direct limit:

Then we induce a conti mapping of
Etalé spaces: $\widetilde{\tau}$: $\widetilde{\tau} \rightarrow \widetilde{\tau}$ $x \mapsto \tau_x(x)$

 $F(U) \rightarrow F(V)$
 $F_{x} = \frac{3!}{2!} \rightarrow P_{x} \rightarrow P_{y} \rightarrow P_{z}$

Consider the map induced on sections: It's well defined, just consider: A, B be étale spra $\widetilde{\tau}_0: \Gamma(U, \widetilde{\tau}) \longrightarrow \Gamma(W, \widetilde{\tau})$ π_k hs = $\pi_1 s = id$, for $\forall s \in \Gamma(u, A)$ $U = \frac{\sqrt{7}}{12} \frac{1}{8}h$ $S \longmapsto S \cdot S$ so $hs \in \Gamma(U, B)$.

This is the desired sheaf mapping onto the quotient sheaf. \blacksquare CDefl (Exactness) If $\mathcal{A}, \mathcal{B},$ and $\mathcal C$ are sheaves of abelian grps over $\mathcal X$ and

 $A \xrightarrow{9} B \xrightarrow{h} C$ is a sequence of sheaf mors, then this seguence is exact at B if the induced seguence on stalks

 $A \times \frac{y}{x} B \times \frac{hx}{x} C_{x}$ is exact for all $x \in X$. A short exact seguence is a seguence $0 \rightarrow A \rightarrow B \rightarrow C \rightarrow 0$ which is exact
at A, B. and C, where 0 denotes the constant zero sheaf.

[Rmk] Abelian property can pass to direct sum. So stalks are also abelian grps. [Rmk] One may ask, why don't we define exact at B by exactness of the seguence $U(0) \rightarrow B(U) \rightarrow C(U)$ for each open U ? That's because exactness is a local property. Locally exact $A_r \rightarrow B_r \rightarrow C_r$
doesn't mean globally exact $J(U) \rightarrow B(U) \rightarrow C(U)$. The usefulness of
sheaf theory is precisely in finding and categorizing obstructions
to the "global exactness"

 $LExpJ X$ is a connected complex m d. Let O be the sheaf of holomorphic functions on X and let O^* be the sheaf of nonvanishing holomorphic functions on X which is a sheaf of ab grps under multiplication. (Nonvanishing implies we can do division, which makes D^* a sheaf of ab grps). Consider the seguence:

 $0 \rightarrow 2 \rightarrow 0$ where $\mathbb Z$ is the constant sheaf $\mathbb Z(U)$ = $\mathbb Z$, i is the inclusion map and $exp: 0 \longrightarrow 0^*$ is $exp_0: 0(0) \longrightarrow 0^*(0)$, $f \mapsto exp_0(f)$ with $exp(f)(z) = exp(z\pi i f(z)), y \ge 0$ (nonvanishing on U) To show this sequence is exact, we want to show at each $x \in Y$, $0 \rightarrow \mathbb{Z}_{x} = \mathbb{Z}$ $\xrightarrow{ix} \mathcal{O}_{x} \xrightarrow{cx \beta_{x}} \mathcal{O}_{x}^{*} \rightarrow 0$ is exact. Im $i_x = 2$, so it remains to check ker(exp_x) = Z. Use convete construct for stalks $\mathcal{O}_x \xrightarrow{c \times P_x} \mathcal{O}_\alpha^*$ (\mathcal{O}^* is a group with $\text{Lf}(\mathcal{O})$) $\mapsto \text{[exp}_\mathcal{O}(f), \text{Q}]$ multiplication, so unit is generally Let $[exp_U(f), U] = 1 - \int_{x}^{x} U_x^{\pi}$, i.e. $[exp(z\pi if), U] = 1 - \int_{x}^{x} U_x^{\pi}$ (1, U)]. By def of equivalence class, there exists n.b.h. $V \subseteq U$ s.t. exponites)=1, VxEV. So for is a constant map on V, i.e.,

 $[(f,U)]=[(L,V)]$, LEZ. Hence $\ker(exp_{x})=Z$. \Box

[Exp] Let A be a subsheaf of B . Then $0 \rightarrow A \rightarrow B \rightarrow B/A \rightarrow 0$ is an exact seguence of sheaves. (Note that only can sheaf of
ab grp can do guotient, so A, B are sheaves of ab grps, although we do not explicity state it)

Pf: [Fact]: Colimit lim in abelian category preserves exactness. Since $0 \rightarrow F(U) \rightarrow G(U) \rightarrow G(U)/F(U) \rightarrow 0$ are exact sequence of ab grps, we have $0 \rightarrow \lim_{x \in U} F(U) \rightarrow \lim_{x \in U} G(U) \rightarrow \lim_{x \in U} G(U) / F(U) \rightarrow 0$ $\frac{\partial}{\partial x}$: e., $0 \rightarrow F_{\alpha} \rightarrow G_{\alpha} \rightarrow H_{\alpha} \rightarrow 0$ is exact, where H is presheaf $U \mapsto \frac{f(U)}{f(u)}$
Since stalks remain unchanged under sheafification, we have $0 \rightarrow F_x \rightarrow G_x \rightarrow (F/g)^{3\text{Hz}}_{x} \rightarrow 0$ is exact. Hence sheaf sequence $0 \rightarrow F \rightarrow G \rightarrow F/G \rightarrow o$ is exact.

[Exp] Let $x = C$ and O be the holomorphic functions on C . Let J be the subsheaf of σ consisting of holomorphic functions vanishing at $z = o \in \mathbb{C}$ Then by the above example, $0 \rightarrow J \rightarrow 0 \rightarrow 0/\gamma \rightarrow 0$ is exact sequence of sheaves.

At z_{10} , the sequence is $0\rightarrow 0 \rightarrow 0 \rightarrow 0$

At $z = 0$, the sequence is $0 \rightarrow 0 \rightarrow 0 \rightarrow C \rightarrow 0$

[Exp] X is a connected Hausdorff space and a, bey fulfilling a +b. Let Z de note the constant sheaf of integers, i.e. Z(u) = Z. Let J denote the subsheaf of Z wich vanishes at a and b, that means i_0 : $\mathcal{T}(U) \rightarrow \mathbb{Z}(U)$ is an inclusion with i_0 (a): i_0 (b)=0 for each U

$$
Sheaf \times \frac{?}{?Z=Z(U)} \qquad \text{Then we have exact} \quad \text{sech} \quad \text
$$

If x=a or x=b, the seg of stalks is $0 \rightarrow 0 \rightarrow \mathbb{Z} \rightarrow \mathbb{Z} \rightarrow 0$ If x ta and x tb, the seg of stalks is $0 \rightarrow 2 \rightarrow 2 \rightarrow 0 \rightarrow 0$ $\overline{\mathbf{u}}$

The following sheaf means sheaf of ab grps or sheaf of modules.

[Def] A graded sheaf is a family of sheaves indexed by integers, I^{*=}{I^{d}}de z. A sequence of sheaves (or sheaf sequence) is a graged sheaf connected by sheaf mappings:

... > F $\frac{d_0}{d_1}$ + $\frac{d_1}{d_2}$ + $\frac{d_2}{d_3}$ + $\frac{d_3}{d_4}$ + $\frac{d_4}{d_5}$ + $\frac{d_5}{d_6}$... A differential sheaf is a sequence of sheaves where $\alpha_j \alpha_{j-1} = o$ in (*). A resolution of a sheaf F is an exact seguence of sheaves of the form $0 \rightarrow \mathfrak{F} \rightarrow \mathfrak{F}^0 \rightarrow \mathfrak{F}^1 \rightarrow \cdots \rightarrow \mathfrak{F}^m \rightarrow \cdots$ which we also denote symbolically by $0 \rightarrow T \rightarrow T^*$ $LRmk$] Various type of information for a given sheaf $\bm{\mathcal{F}}$ can be obtained from knowledge of a given resolution. Besides, resolution can be used $LExp]$ let X be a differentiable m.f. of real dimension in and let E_X^P be the sheaf of real-valued differential form. We'll prove $0 \rightarrow \mathbb{R}$ $\xrightarrow{\rightarrow} \mathcal{E}_{X}^{0} \xrightarrow{d} \mathcal{E}_{X}^{1} \xrightarrow{d} \cdots \rightarrow \mathcal{E}_{X}^{m} \rightarrow 0$ is a resolution of sheaf IR. Fact: On a star-shaped domain U in \mathbb{R}^n , if $f \in \mathcal{E}'(U)$ with $df = 0$, then there exists $u \in \mathcal{E}^{\mathsf{A}}(U)$ (p > 0) s.t. $du = f$. For any $x \in X$, find a star-shaped domain U of x . Consider seg $0 \rightarrow \mathbb{R}(U)$ = \mathbb{R} $\xrightarrow{2\omega}$ $\mathcal{E}_X^{\circ}(U)$ \xrightarrow{d} $\mathcal{E}_X^{\perp}(U)$ \xrightarrow{d} \cdots $\xrightarrow{\sim}$ $\mathcal{E}_X^{\mathsf{M}}(U)$ \rightarrow 0 It's exact at $\mathcal{E}_x^{\rho}(U)$, φ_{ρ} = 1. By fact, kerd \subseteq Imd. By d'=0, kerd 2 Im d. 50 kerd = 1m d. It's exact at $\mathcal{E}_o^P(V)$. IR² $\mathcal{E}_x^P(V) = C^\infty(V,R) \xrightarrow{d} \mathcal{E}_x^1(V) = \{f = \xi \xi : dx_i \}$ $\{S_i \in C^{\infty}(U)\}$ ferend $\Leftrightarrow df = \frac{f}{f} \frac{\partial f}{\partial x_i} dx_i = 0 \Leftrightarrow \frac{f}{f} \frac{f}{\partial x_i} = 0$ on $U \Leftrightarrow f|_U \in \mathbb{R}$ is a const map \Leftrightarrow \vdash \in $\text{Im } i$ Hence it's exact. All in all, the seguence passing to stalks are also exact. [Exp] X is a topo m.f. and G is an abelian grp. We want to derive a resolution for the constant sheaf of G over x . Denote Sp(U, Z) the abelian grp of integral singular chains of degree p in U, i.e., Sp (U, Z) = { E.a; ni | a; EZ, ni : 4 - U3. (Cp (U) in Hatcher) Denote $S^P(U, G) = Hom_{\mathbb{Z}}(S_P(U, \mathbb{Z})$, $G)$ which is the group of singular

cochains in U with coefficients in G. Let S denote the coboundary
operator, S: $S^P(U,G) \rightarrow S^{P+1}(U,G)$. Let S'(G) be the sheaf over X generated by the presheaf $U \mapsto S^P(U, G)$ with induced differential mapping $S^P(G) \stackrel{d}{\longrightarrow} S^{TT}(G)$. How to induce this mapping? Rephrase our question is alwayse useful. $S^{P}(-,G)$, $S^{P+1}(-,G)$ are presheaves. We've know $S: S^{P}(-,G) \rightarrow S^{P+1}(-,G)$ given by coboundary mapping $\delta v: S^P(U, G) \longrightarrow S^{P+1}(U, G)$. We want to induce a sheaf map $\overline{\delta} : \overline{S}^p(-, G) \longrightarrow \overline{S}^{p+1}(-, G)$. Here re detailed steps: 1 Induce mapping between stalks $S_x : S_x^P \leftarrow G$ \rightarrow S_x^{P+1} (-, G) 3 Induce mapping between étalé space $S: S^P(-, 6) \rightarrow S^{P+1}(-, 6)$ $x \mapsto \delta_x(x)$ $\circledS Indue mapping between sections \S: \mathbb{F}(-, \tilde{S}'(-, G)) \rightarrow \mathbb{F}(-, \tilde{S}^{\text{rel}}(-, G))$ Consider the unit ball U in Euclidean space. By alg topo, We've computed $H^{*}(U;G)=\begin{cases} 6 & *=0 \\ 0 & * \geq 0 \end{cases}$. That means the seg $0 \to 0 \xrightarrow{L} S^0(U, G) \xrightarrow{0} \cdots \xrightarrow{S} S^{P-1}(U, G) \xrightarrow{S_{P-1}^{-1}} S^{P}(U, G) \xrightarrow{S} S^{P+1}(U, G) \to \cdots$ is exact. Clerge = Eby cohomology). Hence it's exact passing to any x in U. So the seg $0 \rightarrow G \rightarrow S^0(G)$ $\xrightarrow{S} S^1(G)$ $\xrightarrow{S} S^2(G) \rightarrow \cdots \rightarrow S^m(G) \rightarrow \cdots$
is a resolution of const sheaf G, which we abbreviate by $0 \rightarrow G \rightarrow S^{r}(G)$. We could also consider ("chains and similary obtain a resolution $0 \rightarrow 0 \rightarrow S_{\infty}^{*}(G)$. ($0 \rightarrow 0 \rightarrow S_{\infty}^{0}(G) \rightarrow \cdots \rightarrow S_{\infty}^{m}(G) \rightarrow \cdots$) [Exp] X is a complex m. [of complex dimension n. Let \mathcal{E}^{ρ_2} be the sheaf of (p.g.) forms on X . Consider the sequence of sheaves in which pro fixed: $0 \rightarrow \Omega^{p} \xrightarrow{i} \Sigma^{p,0} \xrightarrow{\delta} \Sigma^{p,1} \xrightarrow{\delta} \cdots \longrightarrow \Sigma^{p,n} \rightarrow 0$ where Ω° is defined as the kernel sheaf of the mapping ε° $\overline{\varepsilon}$, ε° kernel sheaf Ω^P is the subsheaf of $\varepsilon^{P,o}$, hence Ω^P is the sheaf of holomorphic differential forms of type (p, o), i.e., $\varphi \in \Omega^7(U)$ has the form $\varphi = \sum_{i=1}^r \varphi_i dz^{\perp}$, $\varphi_i \in \mathcal{O}(U)$. For each p, we have a resolution

of Ω^P : $0 \rightarrow \Omega^P \rightarrow \mathcal{E}^{P,*}$. The proof use $\overline{e} = 0$ and Grothendick version of the Poincaré Lamma for the 5-operator. Detailed proof is similar in proving resolution $0 \rightarrow R \rightarrow \mathcal{E}^*$. Statement of the Grothendick version of the Poincaré lemma for the 5- operator: If co is a CP, g_1 -form defined in a polydisc Δ in C^n where $\Delta = \{z \mid |z_i| < 1, i=1,\dots,n\}$, and $\delta\omega = 0$ in Δ , then there exists a [p, g-1) - form u defined in a slightly smaller polydisc d'ced so that $\overline{5} = \omega$ in Δ .

[$ExpJ$ X is a complex $m.f.$ Ω^p is the kernel sheaf of sheaf mapping E^{p, 5} $\mathcal{E}^{p,1}$ Consider sheaf sequence

 $0\rightarrow\left(\begin{matrix}1\rightarrow\left(1\rightarrow\right)\end{matrix}\right)\rightarrow\left(\begin{matrix}0\rightarrow\left(1\rightarrow\right)\end{matrix}\right)\rightarrow\left(\begin{matrix}0\rightarrow\left(1\rightarrow\right)\end{matrix}\right)\rightarrow0$

 $(3:5^{p_0}\rightarrow \Sigma^{p_1,p_0}$, $\Omega^p\subseteq \Sigma^{p,p}$ so we have $3:\Omega^p\rightarrow \Sigma^{p_1,p_0}$ since $\partial \bar{\partial}$ + $\bar{\partial} \partial = 0$, we have $\partial \bar{\partial} \hat{h}^{\rho}$ + $\bar{\partial} \partial \Omega^{\rho} = 0$ so $\bar{\partial} \partial \Omega^{\rho} = 0$. Hence

We claim it's a resolution of C without proof.

[Def] Let 1 and m^* be differential sheaves. Then a homomorphism $f: L^* \to \mathcal{M}^*$ is a sequence of holomorphism $f_j: L^q \to \mathcal{M}^q$ which commutes with the differentials of L* and m*. A holomorphism of resolution of sheaves is a homomorphism of the underlying differential sheaves.

 $0 \rightarrow A \rightarrow A^*$ <u> Albert Jacques III de la provincia de la pro</u> $0 \rightarrow \mathcal{B} \rightarrow \mathcal{B}^{\star}$

[Exp] X is a differentiable m.f. and Let

 $0 \rightarrow IR \rightarrow \Sigma^*$, $0 \rightarrow IR \rightarrow S^{\bullet}_{\infty}(IR)$ be the resolutions of R given by previous examples. Define $I: \mathcal{E}^* \longrightarrow \mathcal{S}_{\infty}^*(R)$ by setting $I_U: \mathcal{E}^*(U) \longrightarrow \mathcal{S}^*_{\infty}(U, \mathbb{R})$ $\varphi \longmapsto I_{U}(\varphi)$ which is $I_{U}(\varphi)(c) = \int_{c} \varphi$

It induces a map of
$$
resolutions
$$

\n $0 \rightarrow \mathbb{R} \rightarrow \mathbb{R}$
\n $\begin{array}{c}\n\vdots \\
\downarrow \\
\downarrow\n\end{array}$
\nTo show it's a homomorphism, we only need to show the
\ncliagram commutes.
\n $0 \rightarrow \mathbb{R} \xrightarrow{i} \mathbb{S} \xrightarrow{e} (\mathbb{R})$
\n $0 \rightarrow \mathbb{R} \xrightarrow{i} \mathbb{S} \xrightarrow{e} \rightarrow \cdots \rightarrow \mathbb{S} \xrightarrow{e} \xrightarrow{e} \mathbb{S}^{H}(\mathbb{R}) \rightarrow \mathbb{S}^{H}((\mathbb{R}) \rightarrow \cdots$
\nFor \mathbb{G} :
\n $\begin{array}{c}\n\vdots \\
\downarrow \\
\downarrow \\
\downarrow\n\end{array}$
\nFor \mathbb{G} :
\n $\begin{array}{c}\n\vdots \\
\downarrow \\
\downarrow\n\end{array}$
\n $\begin{array}{c}\n\vdots \\
\downarrow \\
\downarrow\n\end{array}$
\nFor \mathbb{G} :
\n $\begin{array}{c}\n\vdots \\
\downarrow \\
\downarrow\n\end{array}$
\nFor \mathbb{G} :
\n $\begin{array}{c}\n\vdots \\
\downarrow\n\end{array}$
\n $\begin{array}{c}\n\vdots \\
\downarrow\n\end{array}$
\nFor \mathbb{G} :
\n $\begin{$

 $[$ Prop] Suppose $\varphi \in \mathcal{E}^{p,q}(U)$ for U open in \mathbb{C}^n and $d\varphi = 0$. Then for any point $P \in U$, there is a n.b.h. N of p and a differential form $\psi \in E^{P-I}$ $\mathbb{E}^{I}(N)$ s.t. $\partial \overline{\partial} \psi = \varphi$ in N.

pf: key: application of Poincaré lemmas for the operators d, 2, and 5. $\mathcal{E}_x^{r-1} \xrightarrow{d} \mathcal{E}_x^* \xrightarrow{d} \mathcal{E}_x^{r+1}$ is exact, so dy=0 means there is ue \mathcal{E}_x^{r-1} st. du= φ , where $f = \varphi + q$ is the total degree of φ .

Write
$$
u = u^{r-1} \cdot 0 + \cdots + u^{e-r-1}
$$
, then $du = (0+3)u = u^{r} \cdot 0 + u^{r-1} \cdot 1 + \cdots$
\nBut $du = \varphi$ which is a (φ, φ) -form, hence we only have these terms:
\n $du = \partial u^{r-1} \cdot \varphi + \partial u^{p} \cdot \varphi - 1$. Since $\partial u^{p-1} \cdot \varphi = \partial u^{p} \cdot \varphi - 1 = \varphi$, we can
\napply ∂ and ∂ Point are lemma, so there are $u_1, u_1 \in \mathbb{R}^{p-1} \cdot \varphi - 1$
\n $s.t. \partial u_1 = u^{p} \cdot \varphi - 1$ and $\partial u_2 = u^{p-1} \cdot \varphi - 1$
\n $= \partial \partial u_1 + \partial u_2 + \partial u_3 + \partial u_4$
\n $= \partial \partial u_1 + \partial u_2 + \partial u_3 + \partial u_4$
\n $= \partial \partial u_1 + \partial u_2 + \partial u_3 + \partial u_4$

Cohomology theory

In this Section, we'll see how resolutions can be used to represent the cohomology groups of a space. In particular, we shall see every sheaf admits a canonical resolution with certain nice Crohomological) properties. [Fact] For a short exact sequence of sheaves over X $0 \rightarrow A \rightarrow B \rightarrow C \rightarrow 0$ Take its value at X, we have a sequence $0 \longrightarrow \mathcal{A}(x) \longrightarrow \mathcal{B}(x) \longrightarrow \mathcal{C}(x) \longrightarrow 0$ This sequence is exact at UCx) and B(x) but not necessarily at CCx). $[Exp]$ X is a connected Hausdorff space, let a, $b \in X$ and $a * b$. Z is the constant sheaf of integers on X and J denote the subsheaf of Z vanishing at a and b. We have exact seg $0 \rightarrow \mathcal{J} \rightarrow \mathbb{Z} \rightarrow \mathbb{Z}/\mathcal{J} \rightarrow 0$. Lons ider seguence $0 \rightarrow \mathcal{T}(x) \rightarrow \mathbb{Z}(x) \rightarrow \mathbb{Z}/\mathcal{T}(x) \rightarrow o$ $\Gamma(x,\mathbb{Z})\coloneqq \Gamma(x,\mathbb{Z}) \qquad \Gamma(x,\mathbb{Z}/f)\eqqcolon \Gamma(x,\mathbb{Z}/f)$ $\forall f \in \Gamma(x, \mathbb{Z})$, $f(a) = f(b)$. $\forall g \in \Gamma(x, \mathbb{Z}/f)$, $g(a)$ may not equal to $g(b)$ So Zu) \rightarrow Z/T(x) is not surj. Cohomology gives a measure to the amount of inexactness of the seguence at $C(X)$.

[Construction] Let F be a sheaf over a space X and let S
be a closed subset of X . Define

 $F(s) = \lim_{u \to s} F(u)$.

We've shown the sheaf mor $\tau:\tau\rightarrow\tilde{\tau}$ = $\Gamma(\rightarrow\tilde{\tau})$ is an iso. Hence $F(s)$ can be identified with $S(s, \tilde{\tau}) = \Gamma(s, \pi(s) =: \tilde{\tau}|_s)$ where $\pi: \tilde{\epsilon} \to x$ is the étale map. For simplicity, we denote $\mathcal{F}(s)$ by $\Gamma(s, \mathcal{F})$.

Note that: \bigoplus for any $s \in \mathcal{F}(S)$, there exists open set $U \supseteq S$, and $exists \ f \in F(U) = \Gamma(U, \tilde{F}|_U)$ s.t. $\int_S = S$. (Property of direct limit)

Prop: Given a direct Limit A; Eis Aj for any LEL, 3 i and a EA i sit. $f_i a = L$. It's proved by pick image.

(3) For any set(S), there exists an open covering $\{U_i\}$ of S and $s_i \in F(U_i)$, s.t. $S_i|_{S \cap U_i} = S|_{S \cap U_i}$. Indeed, we pick open $U \supseteq S$ s.t. there exists fe F(U) with $f|_{5}$ = sig . We decompose U to a union of open sets {U_i}. Let fl_{u;} denoted by s:. S_0 we have $s_i|_{S\cap U_i} = f|_{U_i \cap S} = s|_{U_i \cap S}$ 10 Says that we can extend 2 Says that we can decompose seF(S) U. ... SE FIS) to a section under an open covering : (S) : over an open set U

 U_1 . S_1 S_2 , U_2 S_3 U_1 S_3 = S $U_1 \wedge S$

From now on, we're dealing with sheaves of ab grp over a paracompact Hausdorff space X for simplicity.

[Def] A sheaf \mp over a space X is soft if for any closed sex the restriction mapping $F(x) \rightarrow F(S)$ is surj, i.e., any
section of \mp over S can be extended to a section of \mp over x.

ERmkJIt's a kind of lifting property. [Thm] If A is a soft sheaf and $0 \longrightarrow A \xrightarrow{9} B \xrightarrow{h} C \longrightarrow 0$ is a short exact seg of sheaves, then the induced seg $0 \rightarrow O(X) \xrightarrow{g_X} B(X) \xrightarrow{hx} C(X) \rightarrow 0$ is exact. pf: We only need to show it's exact at CCX). ← Given ceCCX), we need to find it's preimage under hx in $B(X)$. • Find $\{b_i\}$ s on $\{u_i\}$ in $B(X)$. Since sheaf seg is exact, so for any $x \in X$, we have $h x: B_x \to C_x$ is surj. Hence, $\exists L \in \beta_{\alpha}$ s.t. $h_{\alpha} L = \Upsilon_{\alpha}^{\times} C \in C_{\alpha}$. By prop of direct limit, \exists U open and be B(U) s.1. τ_{\times}^{U} b = $L \in B_{\infty}$. Consider the commutative diagram: b $B(U)$ $\stackrel{hu}{\longrightarrow}$ $C(U)$ $\stackrel{c|v}{\longrightarrow}$ S_0 $h_0 b = c|u$. $\int d\mu$. Show fb;} can be pieced to a global section. Since \times is paracompact, \exists locally finite refinement $\{S_i\}$ of $\{U_i\}$ s.t. Si are closed set, Vi. Consider the following set $P = \{ (b, s) | S = \bigcup_{i \in I} s_i, b \in B(S), h_s(b) = c | s \}$ P is partially ordered by (b, S) \leq (b', S') if SSS' and b'ls =b. By Axiom s, of the sheaf, every linearly ordered chain has a maximal element by glueing. Hence by Zorn's lemma, there exists a maximal set S and a section bEBCS) s.t. $h(b) = c|_S$. It remains to show $S=X$. Suppose on the contrary
that there exists $S_j \in \{S_i\}$ s.t. $S_j \in S$. If $S_j \cap S = \alpha$, then we have $b' \in B(S \cup S_j)$ by setting $b' = \begin{cases} b & \text{if } s \neq s \\ b_j & \text{if } s = s \end{cases}$, clearly

 $h(b)$ lsus_j = Clsus_j since h(b)ls = Cls and h(b_j)l_{Sj} = Cls_j. So S is not max,

 h ence $S_5 \cap S \neq \bigcirc$. Since h blsns_i = Clsns_i = $h(b_j)$ lsns_i, we have $h(b-b_j)$ = h(b)-h(b) = 0 on S; ns. By exactness at $U(SAS_j) \rightarrow B(SRS_j) \rightarrow C(SAS_j)$, there exists $a \in A(s \wedge s_{i})$ s.t. $g(a) = b - b_{j}$. Since A is soft, we extend a to a global section \tilde{a} . Define $\tilde{b} \in B(SUS_j)$ by $S = \begin{cases} b & \text{on } S \\ b_j + g(\alpha) & \text{on } S_j \end{cases}$ (on $s_j \wedge s_j - b_j + g(\alpha) = b_j + b - b_j = b$) Since $h(\overline{b}) = c|_{SUS_j}$, S is not max. We complete the proof. [Def] A sheaf of abelian grps F over a paracompact Hausdorff space X is fine if for any locally finite open cover {Ui} of x, there exists a family of sheaf mors 1η : $7 \rightarrow 7$ s.t. (a) $\Sigma \eta_i = 1$ (b) η_i (τ_x) = 0 for all x in some n.b.h. of the complement of $|U_i|$ The family 57;} is called a partition of unity of subordinate to the covering $\{u_i\}$. $Vx \in W$
 $Vx \in W$ $\begin{array}{c} \eta_1(\mathcal{F}_x)=0 \\ \vdots \\ \eta_n \neq 0 \end{array}$. We require W be n.b.h. of $\eta_1(\mathcal{F}_x) = 0$. We require W be n.b.h. of η_1 . $[Rmk]$ \Box [Exp] Since partition of unity Subordinate to any open cover is exist, so we have following fine sheaves: 1. Cx for X a para compact Hausdorff space is a fine sheaf.
2. Ex for X a para compact differentiable mf. 3. $\mathcal{E}_{x}^{p,q}$ for X a paracompact almost-complex mf. 4. A locally free sheaf of ϵ_{x} -modules, where x is a differentiable $mf.$ ($534)$ 5. If A is a fine sheaf of rings with unit, then any module over R is a fine sheaf. \Box [prop] Fine sheaves are soft $p f$: Let f be a fine sheaf over X and $S \subseteq X$, $s \in f(S)$. By def of soft, we w.t.s. the section s can be extended to a section over X. We hope to construct a section over X by glueing sections on open Covering of X.

There is an open covering $\{v_i\}$ of S and sections $s_i \in \mathcal{F}(v_i)$ s.t. $S: |S \cap U_i = S |S \cap U_i$. Let $U_o = X - S$ and $s_o = 0$, so that $\{U_i\}U U_0$ is an open covering of X. Since X is paracompact, we can assume { v_i } is locally finite. Hence, by F soft, we have a partition of unity $\{Y_i : \tau \to \tau\}$ subordinate to $\{u_i\}$. Consider $M_i)_{U_i}$: $\mathcal{F}(U_i) \longrightarrow \mathcal{F}(U_i)$, we have $\{v_i\}_{U_i}$ (s.j. $\mathcal{F}(U_i)$. Since $(\eta_i)_{U_i}(s_i) |_{n,b,h,W \circ \{U_i^c = 0\}}$, so $(\eta_i)_{U_i}(s_i)$ can be extend to a section over x_j i.e., $(n_i)_{U_i}(s_i) \in T(X)$.

Define $\widetilde{S} = \sum_i (1_i)_{U_i}(s_i) e T(x)$, we'll show it's a section extended by $s \in \mathcal{F}(S)$, i.e., check $\hat{s}|_{S} = S$

For
$$
a \in S
$$
, $\hat{s}(a) = \sum_i (\eta_i)_{U_i} (s_i)(a) = \sum_{a \in U_i} (\eta_i)_{U_i}(s_i)(a) = \sum_{a \in U_i} (\eta_i)_{a} (s)(a)$
\n $(\eta_i)_{U_i}(s_i)|_{U_i^c = 0} = \sum_{a \in U_i} (\eta_i)_{a^{-1}} S(a)$

 $LExpJ \times be$ the complex and let $U=U_x$ be the sheaf of holomorphic functions on X. Let $s = \{ |z| \leq 4 \}$. Let $f(z) = \sum z^{n!}$ on S . It cannot be extended to X. So 0 is not soft and hence not fine.

[Exp] Constant sheaf is not soft and hence not fine. Let G be constant sheaf over x and let abex with a=b. Define $S \in G(\{a,b\})$ by setting $S(a) \ge 0$ and $S(b) \ne 0$. There doesn't exist $feG(X)=G$ s.t. $f|_{\{a,b\}} = s$, i.e., $f|_{a}=0$ $\frac{1}{2}$ a fix element in G. Hence wich is impossible, because f is G is not soft and thus not fine.

[Γ prop] For exact seg $\sigma \rightarrow A \rightarrow B \rightarrow C \rightarrow 0$ is exact with A, B soft, then C is soft. pf: Fix a closed set S EX. Since A is soft, we have the seg 0→A(5)→B(5) → C(S) → 0 $\int t_{\alpha s}^{x}$ $\int t_{\alpha s}^{x}$ exact at $C(S)$ and $C(S)$. $0 \to \mathcal{A}(x) \longrightarrow B(x) \xrightarrow{9} \mathcal{C}(x) \to 0$ For any se C (S), Jwe B(S) st. fwl=S. Since B is seft,

there exists $t \in B(x)$ with $\tau_B^x(t) = w$. Consider gets, by commutativity, $r_{es}^x g_{(t)} = s$. So we find suitable $r_{es}^x \in C(x)$ as an extension of s. $L[prp]\rightarrow S_{0} \xrightarrow{f_{0}} S_{1} \xrightarrow{f_{1}} S_{2} \xrightarrow{f_{1}} ...$ is an exact sequence of soft sheaves, then the induced section seg vence $\circ \rightarrow \circ \circ (x) \rightarrow \circ (x) \rightarrow \cdots$ is also exact. $pf: Let K_i = ker(S_i \longrightarrow S_{i+1})$. We have short exact sequences $0 \rightarrow \kappa_i$ ², 5 , $\frac{f_i}{\sqrt{1 + \frac{1}{\sqrt{1 +$ key: Induction. $i=1$ $0 \rightarrow \mathcal{K}_1 = f_0 S_0 = S_0 \rightarrow S_1 \xrightarrow{f_1} \mathcal{H}_2 \rightarrow 0$ exact. With S., S. soft, we have \mathcal{R}_2 soft. Suppose R_i is soft. For exact seg $0 \rightarrow R_i \rightarrow S_i \rightarrow R_{i+1} \rightarrow 0$ With Ri, S; soft, we have Rim soft. Hence Rm soft for all m. Since Ki is soft, we have short exact segs $0 \rightarrow k_1(x) \xrightarrow{2} S_1(x) \xrightarrow{f_i} k_{i+1}(x) \rightarrow 0$ Then we have a long exact seg by splicing thoes short exact reg. $0 \longrightarrow S_{o}(x) \longrightarrow S_{1}(x) \longrightarrow S_{2}(x)$
 $\downarrow R_{o}(x)$ $\uparrow b \downarrow R_{1}(x) \longrightarrow R_{2}(x) \longrightarrow R_{3}(x)$ [Construction] (Canonical soft resolution for any sheaf) Let S be a sheaf over X and let $S \xrightarrow{m} X$ be the étale space associated to S . Define a presheaf $C^o(s)(U) = \{f: U \rightarrow \tilde{S} \mid \pi \circ f = 1_U\}$. It's a sheaf and called the sheaf of discontinuus sections of S over X . Define sheaf mapping $h_{\sigma}: S \rightarrow C^{\circ}(S)$ by $s \mapsto \widetilde{s} \in \Gamma(U, C^{\circ}(S))$ where $\widetilde{S}: U \rightarrow \widetilde{C''(S)}$, $x \mapsto s_{x}$, ho is injective, so we define $\mathcal{F}'(g) = C^{o}(S)/g$ and $C^{1}(S) = C^{o}(F^{1}(S))$. By induction, we define $T^i(S) = C^{i-1}(S)/T^{i-1}(S)$ and $C'(S) = C''(T^i(S))$ So we have

 $0 \longrightarrow S \longrightarrow C^o(S) \longrightarrow F'(S) \longrightarrow o$ $66th$ exact. $0 \rightarrow \mathcal{F}^i(\mathcal{S}) \rightarrow \mathcal{C}^i(\mathcal{S}) \rightarrow \mathcal{F}^{i+1}(\mathcal{S}) \rightarrow 0$

Splicing them together, we obtain the long exact seg $0 \rightarrow$ $0 \rightarrow$ $C^{0}(S) \rightarrow C^{1}(S) \rightarrow C^{1}(S) \rightarrow \cdots$ $F'(S) = 1 + \frac{1}{2} \int_{0}^{1} f(x) dx$ We call it the canonical resolution of S and abbreviate by $0 \rightarrow S \rightarrow C^*(S)$ $C^{\circ}(s)$ is soft if S is a sheaf, so $C^i(s)$ = $C^o(\tau^i(s))$ is soft since $F(S)$ is a sheaf. Hence $0 \rightarrow S \rightarrow C^* (S)$ is a soft resolution. Next, we need to define the cohomology grps of a space with coefficients <u>in a given sheaf.</u> Let S be a sheaf over X and consider its canonical soft resolution $0 \rightarrow S \rightarrow \ell^o(S) \rightarrow \ell^{\prime}(S) \rightarrow \cdots$ Take global section X we have a seq by taking (continuus) sections $0 \rightarrow \Gamma(\chi, \zeta) \rightarrow \Gamma(\chi, C^{\circ}(\zeta)) \rightarrow \Gamma(\chi, C^{\circ}(\zeta)) \rightarrow \cdots$ Γ Rmk] One may feel confused about this notation.
 $\Gamma(x, s) := \Gamma(x, \widetilde{s})$, $\Gamma(x, C^{\circ}(s)) := \Gamma(x, \widetilde{C^{\circ}(s)})$. Since S and $C^{\gamma}(S)$ are sheaves, we have $\Gamma(-, C^{\epsilon}(S)) \cong C(S)_{(-)}$ and $\Gamma(-,S) \equiv S(-)$. [Rmk] If S is soft, then we have exact s of t seg $0 \rightarrow s \rightarrow C^{o}(s) \rightarrow \cdots$ Hence by previous property, we have exact seg $\sigma \rightarrow \Gamma(\chi, S) \rightarrow \Gamma(\chi, C^{\bullet}(S)) \rightarrow \Gamma(\chi, C^{\bullet}(S)) \rightarrow \cdots \rightarrow \cdots$ $S(x)$ $C'(s'(x))$ $C'(s'(x))$ \Box

[Def] Let S be a sheaf over a space X and let $H^1(X, S) := H^1(C^*(X, S))$ where $H^1(C^*(X, S))$ is the gth derived group of the cochain complex C*(x, S). $(o \rightarrow C^{\bullet}(x, S) \rightarrow C^{\bullet}(x, S) \rightarrow \cdots)$ The abelian groups H²(x, S) are defined for 220 and are called the sheaf cohomology groups of the space X of degree g and with coefficient in S

[Rmk] This abstract definition is useful to derive general functorial properties of cohomology grps, and we have various

[Thm] Let X be a paracompact Heusderff space. Then
\n(a) For any sheaf S over X,
\n(b) If S is soft, then H¹(X, S) = 0 for \$20
\n(c) If S is soft, then H¹(X, S) = 0 for \$20
\n(d) For any sheaf mor h.i, A
$$
\rightarrow B
$$

\nthere is, for each \$30, a 30P homo he₂: H²(X, A) \rightarrow H²(X, B)
\n \rightarrow 1.01b = hx : A(X) \rightarrow B(X)
\n(a) hg is the identity map if h is the identity map, 930
\n \rightarrow 0², 0³ h³ = (9*eh*)g for all 930, if 9: B \rightarrow C is a second
\nsheaf mor.
\n(c) For each short exact seg of sheaves
\n $0 \rightarrow A \rightarrow B \rightarrow C \rightarrow 0$
\nthere is a 30p homo
\n \rightarrow H²(X, C) \rightarrow H²H²(X, A) for 930 s.f.
\n(d) The induced seg
\n $0 \rightarrow H^0(x, d) \rightarrow H^0(x, d) \rightarrow H^2(x, C) \stackrel{S}{\rightarrow} H^1(x, d) \rightarrow ...$
\n \rightarrow H²(X, A) \rightarrow H³(X, B) \rightarrow H²(X, C) $\stackrel{S}{\rightarrow}$ H²H³(X, A) $\rightarrow ...$
\nis e exact
\n \rightarrow A commutative diagram
\n $0 \rightarrow A \rightarrow B \rightarrow C \rightarrow 0$
\n $\rightarrow A \rightarrow B \rightarrow C \rightarrow 0$
\n $\rightarrow A \rightarrow B \rightarrow C \rightarrow 0$
\n $\rightarrow A \rightarrow B \rightarrow C \rightarrow 0$
\n $\rightarrow A \rightarrow B \rightarrow C \rightarrow 0$
\n $\rightarrow A \rightarrow B \rightarrow C \rightarrow 0$
\n $\rightarrow A \rightarrow B \rightarrow C \rightarrow 0$
\n $\rightarrow A \rightarrow B \rightarrow C \rightarrow 0$
\n $\rightarrow A \rightarrow$

(Note that we shall truncate $5'(x,5)$ to compute $H^o(x,5)$)

 $H^{o}(X, S) = \text{KerS}^{o}/o = \text{KerS}^{o} = \frac{Im z}{f} \int (X, S)$ exactat exactat
C'(x, S) $\int (x, s)$ (a)(2) S is soft, so the canonical resolution of soft sheaf is an exact seg of soft sheaves $0 \rightarrow s \rightarrow C^o(s) \rightarrow C^i(s) \rightarrow \cdots$ Hence by prop we have $0 \rightarrow S'(x, \xi) \rightarrow C'(x)(x) \rightarrow C'(x)(x) \rightarrow ...$ is also exact. Therefore $H^1(X, S) = 0$ for 970 . (b) & (c). Note that for h: A -> B, it induces naturally a cochain complex map $h^*: C^*(A) \longrightarrow C^*(B)$. Recall that $C^o(A)(U) = \{f: U \rightarrow \tilde{A} \mid n+f=1\nu\}$ be sheaf of discontinuous sections of 3 over X. So we define $h^o: C^o(A) \longrightarrow C^o(B)$ by $h^o_{U}: C^o(A)(U) \rightarrow C^o(B)(U)$ $\begin{bmatrix} \widetilde{S} : U \rightarrow \widetilde{A} \\ \widetilde{X} \mapsto S_{\mathbf{x}} \end{bmatrix} \longrightarrow \begin{bmatrix} U \rightarrow \widetilde{B} \\ \widetilde{X} \mapsto (h_{\mathbf{x}}) \\ \vdots \\ h_{\mathbf{y}} \in B(\mathbf{y}) \end{bmatrix}$ where $\mathbf{x} \in A(U)$ There is a injective sheaf mor $f: A \rightarrow C^\alpha(A)$ by $f_U: A(U) \rightarrow C^\alpha(A)(U)$, $s \mapsto [s:U \rightarrow J]$. We view U as subsheaf of $C[X]$ and B a subsheaf of $C^{\prime}(B)$. Note that $h_{\nu}^{\circ}(A(\nu)) \subseteq B(\nu)$ $(h_{\nu}^{\circ}(s) = h_{\nu}s)$ so h induces a mor $h^{\circ} \colon C^{\circ}(A)/A \to C^{\circ}(B)/B$. By definition, $C^{o}(A)/A = T^{4}(A)$. Hence $h^{o}: T^{4}(A) \rightarrow T^{4}(B)$. Repeat above steps, we have a mor $h^4: C^o(F^4(A)) \longrightarrow C^o(F^4(A))$ which is, by definition, $h: \mathcal{C}^{1}(A) \longrightarrow \mathcal{C}^{1}(B)$. Then we have h^3 : Clul/ $_{\mathcal{F}^2(A)}$ C¹(B)/ $\mathcal{F}^1(B)$, which is, by det, h^2 : $\mathcal{F}^2(A) \longrightarrow \mathcal{F}^2(B)$. Then h^2 : $\mathcal{C}^0(\mathcal{F}(A)) \longrightarrow \mathcal{C}^0(\mathcal{F}(B))$ Finally, we have $h^* : \mathcal{C}^*(\mathcal{A}) \longrightarrow \mathcal{C}^*(\mathcal{B})$ $\mathcal{C}^*(\mathcal{A})$ $C^2(B)$ Since $H^{\mathfrak{q}}(\kappa, d) = H^{\mathfrak{q}}(C^{\kappa}(d))$, thm (b)(1)(2)(3) are conclusions in Hatcher's alg. topo. Given $0 \rightarrow A \rightarrow B \rightarrow C \rightarrow 0$, we have $0 \rightarrow C^*(A) \rightarrow C^*(B) \rightarrow C^*(C) \rightarrow 0$ then (C) are conclusions in Hatcher's alg topa

[Rmk] These properties can be used as axioms for cohomology theory, and one can prove existence and uniqueness of a cohomology theory with thoes axioms. The rest part we want to focus on the computation. Def] A resolution of a sheaf S over a space X $0 \rightarrow S \rightarrow A^*$ is called acyclic if $H^1(x, A^p) = 0$ for \forall gro and $p > 0$ [Exp] By above thm, soft resolution of a sheaf is a cyclic. Acyclic resolution of sheaves give us one way of computing the cohomology grps of a sheaf by following thm [Thm](Abstract de Rham thm) Let S be a sheaf over X and Let $0 \rightarrow S \rightarrow A^*$ be a resolution of S. Then there is a natural homo $Y^{\rho}:H^{\rho}(\mathcal{F}(X,\mathcal{A}^*)) \rightarrow H^{\rho}(X,\mathcal{S}).$ Moreover, if $0 \rightarrow S \rightarrow A^*$ is a cyclic, δ^P is an iso. $\boldsymbol{\mathcal{H}}$: . Construct $Y^P : H^P(\Gamma(X, u^*)) \longrightarrow H^P(X, S)$ Common trick: Spliting a long exact seg to short exact seg. $0\rightarrow\mu^{0}\stackrel{i}{\rightarrow}\mu^{1}\stackrel{i}{\rightarrow}\mu^{2}\stackrel{i}{\rightarrow}\cdots$ Let $\mu^{p}=ker(\mu^{p}\rightarrow\mu^{p+1})=Im(\mu^{p-1}\rightarrow\mu^{p})$ ion Ro J mar J mas J Then we have short exact seg $0 \rightarrow \mathcal{R}^P \rightarrow \mathcal{A}^P \xrightarrow{i'} \mathcal{K}^{P+1} \rightarrow 0$. With $S.E.S.$, we have $L.E.S.$: $0 \rightarrow H^{0}(X, K^{p}) \rightarrow H^{0}(X, U^{p}) \rightarrow H^{0}(X, K^{p}) \xrightarrow{\delta} H^{1}(X, K^{p}) \rightarrow ...$ With resolution $0 \rightarrow S \rightarrow \mathcal{A}^*$, we have $H^P(\Gamma(x,\mathcal{A}^*)) = \underline{\text{ker}(\Gamma(x,\mathcal{A}^P) \rightarrow \Gamma(x,\mathcal{A}^{P+1})})$ $Im(\int (x,\mathcal{A}^{\rho_{\nu_1}}) \rightarrow \int (x,\mathcal{A}^{\rho_{\nu_1}})$ $0 \rightarrow R^{p} \rightarrow A^{p} \rightarrow R^{p+1} \subseteq A^{p+1} \rightarrow 0$ exact so $0 \rightarrow \Gamma(x, x^p) \rightarrow \Gamma(x, x^p) \rightarrow \Gamma(x, x^{m})$ $\frac{\Gamma(x, x^p)}{p}$ $Im(\Gamma(x,A^{\rho_{-1}})\rightarrow \Gamma(x,A^{\rho_{j}}))$ exact at first two terms. Hence $ker[\Gamma(x, A^p) \rightarrow \Gamma(x, A^{p_{q_1}}))$ =fer(5(x, A") -> 51x x x") } $=$ $\begin{bmatrix} 1 & x & x^p \end{bmatrix}$ $\begin{bmatrix} 2 & x^p & x^p \end{bmatrix}$

 $S^{\circ}: H^{\circ}(x, \mathcal{X}^{\circ}) \longrightarrow H^{\prime}(x, \mathcal{X}^{\circ})$ Consider 8° in L.E.S. $\Gamma(x, x^{\rho})$

$$
I^{+} \text{ induces } \gamma_{1}^{P} \colon H^{P}(\Gamma(x, A^{*})) \longrightarrow H^{1}(X, K^{P+1})
$$
\n
$$
\left(\Gamma(x, K^{P}) / \dots \right)
$$

If the resolution is acyclic, $H'(X, A^{P-1}) = o$, So in 2.2.5. s^o is surj and thus y_1^P is surj. s^p is obviously inj, hence it's iso. Similarly, consider exact seg $0 \rightarrow \mathcal{R}^{P-r} \rightarrow \mathcal{A}^{P-r} \rightarrow \mathcal{R}^{P-r+1} \rightarrow 0$ we obtain Y_r^P : $H^{r-1}(x, \mathcal{K}^{P-r+1}) \longrightarrow H^r(x, \mathcal{K}^{P-r})$ (iso when acyclic) We define $Y_P = Y_P^P \circ Y_{P-1}^P \circ \cdots \circ Y_P^P \circ Y_1^P : H^P(\Gamma(X, A^*)) \to H^P(X, X^c)$ $H^P(X, S)$ which is iso when resolution is acyclic. **DETERMINATION**

[Rmk] In the proof we only use cohomology ariom and do not use shed property. That's an evidence for axioms are complement.

 $[Corc] Suppose 0 \rightarrow S \rightarrow A^*$ is a homo of resolutions of sheaves. \downarrow \downarrow $0 \rightarrow \mathcal{J} \rightarrow \mathcal{B}^*$ Then there is an induced homo $H^{\rho}(J^r(x,\mathcal{A}^*)) \stackrel{g_{\rho}}{\longrightarrow} H^{\rho}(J^r(x,\mathcal{B}^*))$

which is, moreover, an isomorphism if f is an iso of sheaves and the resolutions are both acyclic.

$$
Pf': \text{Since } H^P(\Gamma(X, -)) \to H^P(X, -) \text{ is natural, we have}
$$

commutative diagram $H^P(\Gamma(x, d^*)) \xrightarrow{X_n^P} H^P(X, S)$
 $H^P(\Gamma(x, B^*)) \xrightarrow{f^{gp}} H^P(X, S)$

f is iso, fp is iso.
resolutions acyclic, x_a^p and y_p^p are iso. When When

[Lemma] Let R be a soft sheaf of ring and m is a sheaf of
A-modules. Then m is a soft sheaf.

Pf: Assume k a closed subset of X. Let se m(k). Fopen UZK and $\overline{s} \in m(U)$ s.t. $r_{15}^V \overline{s} = s$. (property of direct limit) Let $\rho \in \Gamma(NU(x-u), n)$ by setting $e = \begin{cases} 1 & \text{on } k \\ 0 & \text{on } k - U \end{cases}$. Since R is soft, there exists $\overline{\rho} \in \Gamma(X, \mathcal{R})$ with $\tau_{\kappa v_{\beta} - v_{\beta}}^{\times} \overline{\rho} = \rho$. In is a sheaf of \mathcal{R} -module, So $\overline{\rho} \cdot \overline{S} \in \mathcal{M}(X)$. $\uparrow \stackrel{x}{\underset{K}{\times}} \overline{\rho} \cdot \overline{S} = \rho \cdot \uparrow \stackrel{x}{\underset{K}{\times}} \overline{S} = \rho \cdot \frac{S}{\underset{K}{\times}} S$.
 $\overline{\rho} \neq 1$ on k
 $\eta \uparrow (X) \xrightarrow{\overline{\rho}} \mathcal{M}(X)$ comparison
 $\uparrow \stackrel{x}{\underset{K}{\times}} \downarrow \rightarrow \rho \uparrow \stackrel{x}{\underset{K}{\times}}$ an

[Thm] (de Rham) Let x be a differentiable mf. Then the natural $\mathsf{mapping}$ I: $H^{\rho}(\mathcal{E}^*(x)) \longrightarrow H^{\rho}(\mathcal{S}_{\infty}^*(x,\mathbb{R}))$ induced by $\mathcal{E}^*(x) \longrightarrow \mathcal{S}_{\infty}^*(x,\mathbb{R})$ Co singular cochains with coefficients in R. $is \text{ and } \text{ so}$

pf: Consider resolutions of IR in one of our examples. $Claim: \mathcal{E}^* and \mathcal{S}^* are both soft.$ $0 \rightarrow R$ \rightarrow $5\frac{1}{8}$ If the claim is true, we have iso $H^{\rho}(\varepsilon^*(x)) \longrightarrow H^{\rho}(\varepsilon^*_{\infty}(x,R))$ by above corollary.

 \cdot 2^{*} is fine, so 2^{*} is 50 t.

· Show S_{∞}^{*} is soft. By cup product, we find that S_{∞}^{*} is an So-module. Claim: So is soft. If this claim is true, So is soft as a module of soft sheaf. Then we show so is soft: $S_{\infty}^{0}(U)=\{f: S_{\infty}(U)\rightarrow R|f| \text{ is } C^{\infty}\}=\{f: U\rightarrow IR| f C^{\infty}\} = C_{\infty}(U, IR).$ 50 5% is 50 it. 64 bit different from Gtm 65, I guess this is what G 1 m 65 mean)

$$
LThm(Colbeault) Let X be a complex mf. Then
$$

 $H^{1}(X, \Omega^{r}) \cong \frac{ker(\Sigma^{p,1}(X) - \Sigma \Sigma^{p,1}(X))}{Im(\Sigma^{p,1}(X) - \Sigma \Sigma \Sigma^{p,1}(X))}$

$$
Pf: Consider the resolution of soft sheaves:
$$
\n
$$
0 \rightarrow \Omega^{\circ} \rightarrow \Sigma^{P,0} \rightarrow \Sigma^{P,1} \rightarrow \Sigma \rightarrow \cdots \rightarrow \Sigma^{P,n} \rightarrow 0
$$
\n
$$
1^{2}(x,\Omega^{\circ}) \equiv H^{q}(\Gamma(x,\Sigma^{\circ})
$$
\n
$$
= \frac{\ker(\Sigma^{P,q}(x) \rightarrow \Sigma^{P,q}(x))}{\text{Im}(\Sigma^{\circ}^{P,q}(x) \rightarrow \Sigma^{P,q}(x))}
$$
\n
$$
= \lim_{x \to 0} (\Sigma^{\circ}^{P,q-1}(x) \rightarrow \Sigma^{P,q}(x))
$$
\n
$$
= \lim_{x \to 0} (\Sigma^{\circ}^{P,q-1}(x) \rightarrow \Sigma^{P,q}(x))
$$

Next, we let bundles play a role in de Rham thm.

[Def] Let M and N be sheaves of modules over a sheaf of commutative rings P_1 . Let $D \otimes_R N$ denote the sheaf generated by presheaf $U \rightarrow \mathcal{D}\mathcal{U}U$ and we call sheaf m eg n the tensor product of m and n .

 $\longrightarrow \sum^{p,q-1}_{(X)} \sum_{i=1}^{n} \sum_{j=1}^{n} (x_i + \sum_{i=1}^{n} \sum_{j=1}^{n} (x_j + \sum_{j=1}^{n} x_j + \sum_{$

O

ERmk] presheaf $U \rightarrow m \omega$ is not a sheaf. We provide
a contra example here. Let $E \rightarrow X$ be a holomorphic vector
bundle with no nontrivial global holomorphic sections. We have sheaf $O(E)$ by $O(E)(U) = \{all \; holo \; sections \; of \; E \; over \; U \}$ We have sheaf ϵ by $\mathcal{E}(U) = \{$ all clifferential functions on U_5^2 O(E) and E are sheaves of O-module where O is the structure sheaf setting by $O(U)$ = { all holo funs on U}

Let $\{U_j\}$ be the sets of trivializing cover of X . We have $O(E) \&_{\mathcal{O}} E(C)$ (x) = $O(E)(X) \&_{\mathcal{O}(X)} E(X) = 0$ (since there are no nontrivial global holomorphic sections, $O(E)(x) = 0.$) On the other side, $(\mathcal{O}(E) \otimes_{\mathcal{O}} E)(U_j) = \mathcal{O}(E)(U_j) \otimes_{\mathcal{O}(U_j)} E(U_j) \cong$ $\Sigma(E)(U_j) \neq 0$. Thus we have nontrivial patch of sections, if U(E) ω_{σ} ϵ is a sheaf we can glue patches of nontrivial sections to obtain a global nontrivial section, but we find
there are no global nontrivial section since $(U(E) \mathcal{D}_{\emptyset} \mathcal{E})(x) = \emptyset$.
Hence it's not a sheaf. (We define $U(E) \mathcal{D}_{\emptyset} \mathcal{E}$ the presheaf here) L prop] $(\eta \otimes_{\mathcal{A}} \eta)_{x} = \eta \eta_{x} \otimes_{\mathcal{A}_{x}} \eta_{x}$ 10^{-2} Devote H the presheaf $U \rightarrow \eta(U) \Theta_{RU} \gamma(U)$. Sheafitication obesn't change stalks, so $(m\omega_z \eta)_x$ = η_x Hence it suffices to show $H_x = m_x \mathcal{B}_{2x} \mathcal{C}_{x}$ By concrese construction of stalks, $H_{\alpha} = \frac{11}{11}H(U)/\sim$ $=$ { $[$ (U, f)] $]$ U open in X, $f \in H(U)$ = $m(U)$ \mathcal{B}_{new} 9 (U) $\}$ By construction of tensor product $=\{L(U,\Sigma a;u_{i}ov)\}\left\{U\subseteq X, a_{i} \in R(U), u_{i} \in W(U), v_{i} \in Y(U)\}\right\}$ $m_x \mathcal{D}_{R_x} \eta_x = \left\{ \sum_i [(v, a_i)] [(v, u_i)] \otimes [(v, v_i)] \right\} \left[(v, u_i) \right] \in \mathcal{D}_x$

 $=\left\{\left[\left(U,\sum a_{i}u_{i}\otimes v_{i}\right)\right]\right\}\cup\left\{\begin{array}{l}U\subseteq X,a_{i}\in R(U)\\u_{i}\in M(U),\nu_{i}\in\eta(U)\end{array}\right\}$ We can always change representative elements as this $for m$. $=$ H_{x} .

[Lemma] If J is a locally free sheaf of R-modules and $0 \rightarrow A' \rightarrow A \rightarrow A'' \rightarrow 0$ is a short exact seg of R - modules, then $0 \rightarrow \mathcal{A}^{\prime} \mathcal{B}_{\mathcal{A}} \mathcal{T} \rightarrow \mathcal{A} \mathcal{B}_{\mathcal{A}} \mathcal{T} \rightarrow \mathcal{A}^{\prime} \mathcal{B}_{\mathcal{A}} \mathcal{T} \rightarrow 0$

is also exact.

 $p f: For any $x \in X$
\n $0 \rightarrow (A' \mathcal{Q}_R T)_x = A'_x \mathcal{Q}_R T_x \rightarrow A_x \mathcal{Q}_R T_x \rightarrow A'_x \mathcal{Q}_R T_x \rightarrow 0$
\nis exact, since exact seg tensor free module is also
\nexact by basic algebra.$

Recall that there is a resolution of sheaves of O -modules over a complex m.f. X:

 $0 \longrightarrow \Omega^P \longrightarrow \mathbb{S}^{P,0} \stackrel{\overline{\partial}}{\longrightarrow} \mathbb{S}^{P,1} \stackrel{\overline{\partial}}{\longrightarrow} \cdots \longrightarrow \mathbb{S}^{P,n} \longrightarrow 0$

If x admits a holomorphic bundle E, we have sheaf OCE) We've proved $O(E)$ is locally free in the thm illustrating correspondence of S-bundles and Locally free S-sections. Exact seg tensor locally free sheaf is also exact, i.e. $0 \rightarrow \Omega^P$ & $O(E) \rightarrow \Sigma^{P,0}$ & $O(E) \stackrel{\overline{\partial}O^1}{\longrightarrow} \cdots \stackrel{\overline{\partial}O^1}{\longrightarrow} \Sigma^{P,n}$ & $O(O(E) \rightarrow O$ is an exact seg.

 $[Prop]\Omega^P\otimes_{\mathcal{O}}\mathcal{O}(E)\cong \mathcal{O}(\Lambda^P T^*(X)\otimes_{C}E)$

 Pf : We should use two facts:1 E , F be bundles over mf M. J' be section sheaf, we have $S(E\otimes F) = S(E) \otimes_{CM} \Gamma(F)$, more ole tails://math.stackexchange.com/questions/1857939/sections-of-

2. Recall that Ω^p = ker $(\mathcal{E}^{p,0,5}, \mathcal{E}^{p,1})$, actually it's the sheaf of holomorphic differential forms of type (p,o), i.e., in local coord, $\varphi \in \Omega^{p}(U)$ iff $\varphi = \sum_{k \in \Omega} \varphi_{k} dz^{T}$, $\varphi_{k} \in \mathcal{O}(U)$. So $\Omega^{p} = \mathcal{O}(\Lambda^{p}T^{*}(X))$.

With those facts, we have $U(\wedge^p T^*(x) \otimes_c E) \equiv U(\wedge^p T^*(x)) \otimes_c O(E)$ $\subseteq \Omega^P\otimes_{\mathcal{O}} \mathcal{O}(E)$.

 $LProp \left(\begin{array}{cc} E^{p,9} & \mathcal{O}_U(f) \end{array} \right) \cong \mathcal{E} \left(\Lambda^{p,4} \right) \top^*(X) \mathcal{B}_C \mathcal{F} \right).$

 $Pf: \quad \Sigma \in \Lambda^{p,2} \text{ T*}(x) \otimes_{c} E = \Sigma \Lambda^{p,2} T^{*}(x) \otimes_{c} E(E)$
 $\Xi^{p,1} = \Sigma (\Lambda^{p,2} T^{*}(x)) = \Sigma \Lambda^{p,2} T^{*}(x) \otimes_{c} O(E)$
 $= \Sigma^{p,2} \otimes_{c} O(E)$

section的性 后由性质差的决定 differentiable \$ holo 故-次易终还是 differentiable

 $LRmkJ\bar{L}n\Delta\mathcal{Q}_B\Pi^{\prime\prime}, \Delta, \Box \text{ are } \theta-m \text{ values.}$

[Prop] $O(E) \otimes_{O} E = E(E)$

 $E^{P,9}(E) = E^{P,9}Q_0U(E)$.

 $E(E) = E(E)$ $E(E) = U(E)$ B_0 E

[Def] $O(X, \Lambda^p T^*(X) \otimes E)$ is called the Cglobal) holomorphic p-forms on X with coefficients in E, denoted by $\Omega^p(X,E)$ We denote the sheaf of holomorphic p-forms with coefficients in E by $\Omega^0(E)$. Let $\mathcal{E}^{2,1}(X,E) := \mathcal{E}(X, \Lambda^{p,q} \tau^{q}(X) \otimes_{\mathbb{C}} E)$ be the differentiable (p,g)-forms on x with coefficients in E.

[Rmk]
$$
\Omega^{P}(X, E) = \underline{O}(X, \Lambda^{P}T^{*}(X) \otimes_{C} E) = \underline{O}(\Lambda^{P}T^{*}(X) \otimes_{E})(X)
$$

\n $\frac{\Omega^{P}(E)}{X}$
\n $\frac{\Omega^{P}(E)}{X}$
\n $\frac{\partial^{P}(E)}{\partial X}$
\n $\frac{\partial^{P}(E)}{\partial X}$

 $\alpha t \times$

Then the long exact seg can be written as $0\rightarrow\Omega^{P}(E)\rightarrow\ \mathcal{E}^{P,0}(E)\rightarrow\mathcal{E}^{P,1}(E)\xrightarrow{\partial_{E}}\cdots\xrightarrow{\partial_{E}}\mathcal{E}^{P,n}(E)\rightarrow o$ where $5 = 5 \otimes 1$. It's exact and $\epsilon^{p,1}(E)$ are fine sheaves, so we have following generalization of Dolbeault's thm. [Thm] (Dol beault's thm) Let X be a complex m.f. and let $E \rightarrow X$ be a holomorphic vector bundle. Then
 $H^{4}(X, \Omega^{P}(E)) \cong \frac{\text{ker}(E^{P, 2}(X, E)) \geq E^{P, 2+1}(X, E)}{\text{Im}(\epsilon^{P, 2-1}(X, E)) \to \epsilon^{P, 2}(X, E)}$ Céch cohomology with coefficients in a sheaf This section has similar process as in defining singular homology. Let X be a topo space, X be a sheaf of ab grps on X .
Let Y be a covering of X by open sets. $\begin{array}{ccc} \text{CDef} & (9 - simple x) \cdot A & \underline{0} - simple x & \sigma & \text{is an ordered collection} \\ \text{of 9+1 sets of the covering 11 with nonempty intersection,} \end{array}$ i.e., $\sigma = (U_0, \cdots, U_q)$ with $\bigcap_{i=0}^{\infty} U_i \neq \emptyset$. . We call the set $\bigcap_{i:\text{def}} U_i =: I \cup I$ the support of the simplex σ . . A <u>g-cochain</u> of u with coefficients in f is a mapping f which associates to each a -simplex σ a $f(\sigma) \in \mathcal{F}(\sigma)$.
• Let $\frac{C^{\alpha}(1, \mathcal{F})}{\sigma}$ denote the set of α -cochains, which is an abelian grp. . Define coboundary operator $s: C^2(\mathcal{U}, \mathcal{F}) \longrightarrow C^{2+1}(\mathcal{U}, \mathcal{F})$ by $\delta f(\sigma) = \sum_{i=0}^{q+1} (-1)^i f(\sigma_i)$ where $\int_{0}^{1} f(\sigma_i) dx$ σ_i = (U₂, ..., U_i, ..., U₁₊₁) and $\tau_{i\sigma}^{|\sigma_i|}$ is the sheaf restriction. [Prop] 1. 8 is a grp homo

 $2. \int_{0}^{2} = 0$

3. We have cochain complex

 $C^*(u,s) = [C^*(u,s) \rightarrow \cdots \rightarrow C^2(u,s) \stackrel{\delta}{\rightarrow} C^{2+1}(u,s) \rightarrow \cdots]$

$$
[Def] Cohomology of cochain complex C*(U,S) is the Cechcohomology. $Z^2(U,S)=ker S, B^2(U,S):=Im S, and$
 $H^2(U,S):=H^2(C^*(U,S))=Z^2(U,S)/B^2(U,S)$
$$

[prop] If m is a refinement of U, then there is a natural $\frac{\partial^2 P}{\partial \Psi^2}$ homo $\mathcal{N}^{\mathcal{U}}_{\mathcal{I}}$: H $(\mathcal{U}, \mathcal{S}) \longrightarrow H^{\mathcal{I}}(\mathcal{U}, \mathcal{S})$ and

 $\frac{\lim_{x\to 0} H^{a}(2l, s) \approx H^{a}(x, s)}{\lim_{x\to 0} H^{a}(2l, s)}$ we can represent $H^{*}(x, s)$ by
Cech cohomology.
[Prop] If u is a Covering s.t. $H^{a}([0], S) = 0$ for $a \ge 1$ and

all simplices σ in U , then $H^2(x, S) \cong H^2(U, S)$ for all
a > 0 and we call U a Leray cover.

Eprop] If X is paracompact, U is locally finite covering,
and S is a fine sheaf over X, then $H^9(U, S) = 0$ for $4 > 0$