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Abstract

In [1] we’ve known π1(SO(3)/D2) ≃ Q. In this article we will visualize
SO(3)/D2 and π1(SO(3)/D2) to obtain a nice picture describing rotation
of eigenframes.
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1 Background:relationship between 3-band Her-
mitian Hamiltonian and SO(3)/D2

In this article we only consider hermitian Hamiltonian without band degeneracy.
You can find more detail in [1].

Definition 1.1. space of HamiltoniansH = {H = uT1 u1+2uT2 u2+3uT3 u3|[u1, u2, u3] ∈
SO(3)/D2}

Remark 1.2. [u1, u2, u3] ∈ SO(3), the following four elements determine the
same H in H, that’s why we quotient D2.:

[u1, u2, u3] ∼ [−u1,−u2, u3] ∼ [−u1, u2,−u3] ∼ [u1,−u2,−u3]
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2 Visualizasion of SO(3)/D2

We’ve known SO(3) = {M ∈ GL(3,R)|MTM = I, detM = 1}, a group of
“hand-preserving” rotations. The following we focus on another way to describe
SO(3).

Any rotation can be described by a pair (r̂, θ) which means rotate along r̂
by θ.

Definition 2.1. Denote ϕ(r̂, θ) the rotation along axis r̂ by angle θ, where
r̂ ∈ S2 and θ ∈ [0, 2π].

So SO(3) = {ϕ(r̂, θ)|r̂ ∈ S2, θ ∈ [0, 2π]}
Then we want to make parametrize space of SO(3) smaller and visualize

SO(3).

Fact 2.2. There are two properties easily check:
(1)ϕ(r̂, θ) = ϕ(−r̂, 2π − θ)
(2)In particular, ϕ(r̂, π) = ϕ(−r̂, π)

The first fact means we can always make the second parameter θ lies in [0, π].
For example, ϕ(x̂, 3π/2) = ϕ(x̂, 2π − 3π/2) = ϕ(x̂, π/2).

We can view SO(3) as a solid sphere(ball) with radium π. Any point t⃗ in
this ball represnts the rotation ϕ(⃗t/

∥∥t⃗∥∥ ,∥∥t⃗∥∥). For example, the bold point in
Fig1 is ϕ(ŷ, π/2), the rotation along ŷ by π/2.

Figure 1: Parametrization of SO(3)

The second of fact shows that we should glue the antipodal points of the
boundary of this ball, see Fig2.

Conclution 2.3. SO(3) is a ball with radium π with identifying antipodal
points, i.e., SO(3) ≃ B3(π)/ ∼, where x ∼ y ⇔ x, y ∈ ∂B3(π) and x = −y

Next, we want to visualize SO(3)/D2.

Fact 2.4. D2 = {ϕ(x̂, π), ϕ(ŷ, π), ϕ(ẑ, π), id}
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Figure 2: Antipodal points are the same in SO(3)

Figure 3: D2 in SO(3)
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We can view D2 as the following four points in Fig3

Conclution 2.5. SO(3)/D2 is a ball with radium π after the following two
procedure:

(1)glue antipodal points
(2)glue four points in Fig3 to a point

3 The fundamental group of SO(3)/D2

Fact 3.1. π1(SO(3)/D2) ≃ Q = {±1,±i,±j,±k}

Property 3.2. We have the following bijections:
SO(3)/D2 ↔ space of Hamiltonians ↔ space of eigenframes
where space of Hamiltonians is the space in Definition 1.1.

Proof. SO(3)/D2 ↔ {space of Hamiltonians} ↔ {spaces of eigenframes}
ϕ(r̂, θ) 7→ H = uT1 u1 + 2uT2 u2 + 3uT3 u3 7→ [u1, u2, u3]
where [u1, u2, u3] = ϕ(r̂, θ)[e1, e2, e3] and [e1, e2, e3] is the standard frame in

R3.

By Property 3.2, we have

Conclution 3.3. Any loop in SO(3)/D2 is an evolution of the eigenframe, i.e.,
any element in π1(SO(3)/D2) is an evolution of the eigenframe.

Example 3.4. Consider loop L1, L5, L6 in Fig4 in which x̂, ŷ, ẑ corresponding
to the first, second and third eigenvectors.

Evolution of eigenframe on loop L1: the first eigenvector (x̂) fixed, the second
(ŷ) and third (ẑ) eigenvectors rotate by π.

Evolution of eigenframe on loop L6: the second eigenvector (ŷ) fixed, the
first (x̂) and third (ẑ) eigenvectors rotate by π.

Evolution of eigenframe on loop L5: the third eigenvector (ẑ) fixed, the first
(x̂) and second (ŷ) eigenvectors rotate by π.

The following example is a more detailed computation.

Example 3.5. Evolution on Loop L1. Parametrization shown in Fig5.
By [2],The rotation matrix of rotating along [a1, a2, a3] by angle ψ is: cosψ + (1− cosψ) a1

2 (1− cosψ) a1a2 − sinψa3 (1− cosψ) a1a3 + sinψa2
(1− cosψ) a1a2 + sinψa3 cosψ + (1− cosψ) a2

2 (1− cosψ) a2a3 − sinψa1
(1− cosψ) a1a3 − sinψa2 (1− cosψ) a2a3 + sinψa1 cosψ + (1− cosψ) a3

2


In this case, a1 = 0, a2 = cosθ, a3 = sinθ, ψ = π. Then the rotation matrix,

i.e., eigenframes are: −1 0 0
0 cos 2θ sin 2θ
0 sin 2θ − cos 2θ


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Figure 4: loops in SO(3)/D2

Figure 5: loop L1
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which is parametrized by θ.
So evolution of eigenframe on loop L1 is: the first eigenvector (x̂) fixed, the

second (ŷ) and third (ẑ) eigenvectors rotate by π.

8 points in Fig6 is one point. Besides, loops should be start and end at same
point. Hence we only need to consider loops in Fig6.

Conclution 3.6. All nontrivial loops can be represented by loops(yellow lines)
in Fig6 (We omit arrows)

Figure 6: “Base loops” in SO(3)/D2

To illustrate π1(SO(3)/D2), we have the following obvious properties:

• L1 = L4. Indeed, in L1, ŷ and ẑ rotate clockwise, while in L−1
4 , ŷ and ẑ

rotate counterclockwise. Hence, L1 = (L−1
4 )−1 = L4

Corollary 3.7. L1 = L2 = L3 = L4

Proof. By step(2) of Conclusion 2.5, we have L3 = L1 and L2 = L4. By
Corollary 3.6, L2 = L1.

Corollary 3.8. The order |L1| = 4

Proof. L4
1 = L1L2L3L4 =trivial loop and obviously L2

1, L
3
1 ̸= trivial loop.

Corollary 3.9. L2
1 = −1

Proof. L4
1 = 1 so L2

1 = −1

• Similarly, L7 = L8 and |L7| = 4. Hence, we can only focus on the 1/8 ball.
We’ve known π1(SO(3)/D2) ≃ Q, so the visualizing of π1(SO(3)/D2) is
as in Fig7:

6



Figure 7: π1(SO(3)/D2)

Remark 3.10. Note that I only choose a special element to illustrate
prperties. For example, if I prove L1 = L2, we also have L5 = L9 in Fig4.

Reasonable Guess: When two eigenvectors rotate π, there is a degen-
eracy of these two bands. Besides, we should consider orientations. For
example, on L1 (resp. L2), ŷ and ẑ rotate π, so L1 (resp. L2) (loop of
charge i) encloses a degeneracy formed by the second and third band with
orientation +. In contrast, L−1

1 encloses a degeneracy formed by the sec-
ond and third bands with orientation −. (Reference [1] thinks it is right,
but I do not know why.)

Remark 3.11. For loop −1, evolution of eigenframe end at the initial
state, one may think it’s a trivial loop, which is wrong. It is like a spin in
physics, which should rotate 4π to return to the initial. Rotate 2π is just
−1 ̸= 1.

Relationship between [1,Fig.3A to C] “Two NLs of the same orienta-
tion between the same pair of bands are described by {−1}[1]”. With the
guess, the loop L1L2 encloses two degeneracies with the same orientation
formed by second and third band. So L1L2 is the charge of −1. A sim-
ilar analysis shows that L7L8 is the loop encloses two degeneracies with
the same orientation formed by first and second bands. The transfor-
mation in [1,Fig.3A to C] is the deformation from L7L8 to L1L2 on our
ball, i.e., from k2 = −1 to i2 = −1 (see Fig??(b)).

4 Further discussion

This visualization is useful because the SO(3)/D2 ball combines the rota-
tion behaviors of frames to the loop which plays same role as bundle.
I think it’s a nice picture.
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For nonHermitian case, if we can find a group, whose loop contain both
information of evolution of hermitian and evolution of eigenframes, then same
trick can be played. However, it seems difficult to find such a group.
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