Topology and geometry of singularities

Zhou Fang, Wenhui Yang, Chenlu Huang June 19, 2025

Motivation

Hamiltonian is a matrix corresponding to the system we considered.

Hamiltonian
$$H = \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{bmatrix} \begin{cases} eigenvalue: energy \\ eigenvector: state \end{cases}$$

If Hamiltonian is parametrized, such as parametrized by temperature T:

$$H(T) = \begin{bmatrix} a_{11}(T) & a_{12}(T) & a_{13}(T) \\ a_{21}(T) & a_{22}(T) & a_{23}(T) \\ a_{31}(T) & a_{32}(T) & a_{33}(T) \end{bmatrix}$$

We can draw the energy band

Figure 1: Energy bands

n-band: *n* is the number of eigenvalues

Figure 2: Gapless or Gapped

- T_1 : singular points (points where eigenvalues degenerate)
- $H(T_1)$: gapless Hamiltonian
- $H(T_2)$: gapped Hamiltonian

Exotic phenomina emerge at singular points, so whether a loop in parameter space touches singular points is considerable.

Consider the matrix

$$H = \begin{bmatrix} f_3 & f_2 \\ -f_2 & -f_3 \end{bmatrix}$$

 $f_3, f_2 \in \mathbb{R}$

Draw the degeneracy line:

Figure 3: Degeneracy line

Zhou Fang, Wenhui Yang, Chenlu Huang

The following numbers means the number of eigenvalues

- Type I: 2
- Type II: $2 \to 1 \to 2 \to 1 \to 2 \to 1 \to 2 \to 1 \to 2 \to 1 \to 2$
- Type III: 1

Goal: Algebraic topology (computable invariants) for those loops to classify the evolution of eigenvalues and eigenstates.

Goal: Algebraic topology (computable invariants) for those loops to classify the evolution of eigenvalues and eigenstates.

There are many cases: Hermitian/non-Hermitian, 2-band/3-band/n-band, whether loop can intersect singular points,...

 D_2 -bundle over $SO(3)/D_2$

- A 3-band gapped Hermitian Hamiltonian can be written as $H = \sum_{i=1}^{3} j |u^{i}\rangle \langle u^{j}|$
- H can be determined by a set of "right hand" orthonormal vectors (|u¹⟩, |u²⟩, |u³⟩ form an element in SO(3))
 H is unchanged for two of eigenvectors flip: |u^j⟩ → |u^j⟩(modulo D₂).
- *H* can be describe by $SO(3)/D_2$

Consider the bundle

$$D_2 \hookrightarrow SO(3) \xrightarrow{\pi} SO(3)/D_2 =: X, \quad \pi(x) = \bar{x}$$

Goal: The isomorphism classes of principal D_2 -bundles over X are denoted by $Prin_{D_2}(X)$ and $Prin_{D_2}(X) \simeq [X, BD_2]$ where BD_2 is the classifying space of D_2 . The following will show which $\phi \in [X, BD_2]$ corresponds to the principal D_2 -bundle we considered.

We need to find $\phi: X \to Gr_1(\mathbb{R}^\infty) \times Gr_1(\mathbb{R}^\infty)$, such that $\pi: SO(3) \to X$ appears in the pullback of ϕ and $f \times f$:

Claim: $\phi: SO(3)/D_2 \to Gr_1(\mathbb{R}^\infty) \times Gr_1(\mathbb{R}^\infty)$ is

$$\phi\left(\boxed{\begin{bmatrix} a\\b\\c\end{bmatrix}}\right) = (span\left(\begin{bmatrix} a & 0 & 0 & \cdots \end{bmatrix}\right), span\left(\begin{bmatrix} b & 0 & 0 & \cdots \end{bmatrix}\right)$$

Zhou Fang, Wenhui Yang, Chenlu Huang

Topology and geometry of singularities

12 / 51

The pullback of ϕ and $f \times f$ is constructed as:

$$S = X \times_{BD_2} ED_2 = \left\{ \left(\boxed{\begin{bmatrix} a \\ b \\ c \end{bmatrix}}, (v_1, v_2) \right) | \boxed{\begin{bmatrix} a \\ b \\ c \end{bmatrix}} \in X, (v_1, v_2) \in V_1(\mathbb{R}^\infty) \times V_1(\mathbb{R}^\infty),$$
$$\operatorname{span}\left(\begin{bmatrix} a & 0 & 0 & \cdots \end{bmatrix} \right) = \operatorname{span}(v_1), \operatorname{span}\left(\begin{bmatrix} b & 0 & 0 & \cdots \end{bmatrix} \right) = \operatorname{span}(v_2) \right\}$$

Since v_1, v_2 are orthonormal, we have $v_1 = [\pm a, 0, 0, \cdots]$, $v_2 = [\pm b, 0, 0, \cdots]$.

Zhou Fang, Wenhui Yang, Chenlu Huang

Set-up for Hermitian systems

For a Hermitian system, denote the matrix and the eigenvalues by

$$H_{2}^{'} = H_{2}^{'}(f_{1}, f_{3}) = \begin{bmatrix} f_{3} & f_{1} \\ f_{1} & -f_{3} \end{bmatrix}, \omega_{\pm}^{'} = \pm \sqrt{f_{1}^{2} + f_{3}^{2}}.$$

It has two distinct eigenvalues when $(f_3, f_1) \neq (0, 0)$. So a parameter space for this Hamiltonian H'_2 is $\mathbb{R}^2 - \{(0, 0)\}$:

Zhou Fang, Wenhui Yang, Chenlu Huang

Hermitian system

For a Hermitian system,
$$H'_2 = H'_2(f_1, f_3) = \begin{bmatrix} f_3 & f_1 \\ f_1 & -f_3 \end{bmatrix}$$
, the eigenvalues
 $\omega_{\pm} = \pm \sqrt{f_1^2 + f_3^2}$.
Let $U_1 = \{ \mathbf{R}^2 - \{ (f_3, 0), f_3 \le 0 \} \}, U_2 = \{ \mathbf{R}^2 - \{ (f_3, 0), f_3 \ge 0 \} \}$, then we know that
 $U_1 \cup U_2 = \mathbf{R}^2 - \{ (0, 0) \}$.

In U_1 , the corresponding eigenvectors are

$$egin{aligned} & v_{+}^{'} = rac{1}{\sqrt{2(f_{1}^{2}+f_{3}^{2})+2f_{3}\sqrt{f_{1}^{2}+f_{3}^{2}}}} \begin{bmatrix} f_{3}+\sqrt{f_{1}^{2}+f_{3}^{2}} \\ f_{1} \end{bmatrix}, \ & v_{-}^{'} = rac{1}{\sqrt{2(f_{1}^{2}+f_{3}^{2})+2f_{3}\sqrt{f_{1}^{2}+f_{3}^{2}}}} \begin{bmatrix} -f_{1} \\ f_{3}+\sqrt{f_{1}^{2}+f_{3}^{2}} \end{bmatrix}. \end{aligned}$$

Zhou Fang, Wenhui Yang, Chenlu Huang

In *U*₂,

$$egin{aligned} & v_{+}^{'} = rac{1}{\sqrt{2(f_{1}^{2}+f_{3}^{2})-2f_{3}\sqrt{f_{1}^{2}+f_{3}^{2}}}} \begin{bmatrix} f_{1} \ -f_{3}+\sqrt{f_{1}^{2}+f_{3}^{2}} \end{bmatrix}, \ & v_{-}^{'} = rac{1}{\sqrt{2(f_{1}^{2}+f_{3}^{2})-2f_{3}\sqrt{f_{1}^{2}+f_{3}^{2}}}} \begin{bmatrix} f_{3}-\sqrt{f_{1}^{2}+f_{3}^{2}} \\ f_{1} \end{bmatrix} \end{bmatrix}. \end{aligned}$$

The transition map of $v_{+}^{'}, v_{-}^{'}$ is

$$t_{\pm} = egin{cases} 1, & f_1 > 0 \ -1, & f_1 < 0 \end{cases}$$

Zhou Fang, Wenhui Yang, Chenlu Huang

Topology and geometry of singularities

16 / 51

$$v_{+}^{'} = rac{1}{\sqrt{2(f_{1}^{2}+f_{3}^{2})-2f_{3}\sqrt{f_{1}^{2}+f_{3}^{2}}}} \begin{bmatrix} f_{1} \ -f_{3}+\sqrt{f_{1}^{2}+f_{3}^{2}} \end{bmatrix} \, .$$

Notice that v'_+, v'_- are invariant under scaling $(f_3, f_1) \mapsto (\lambda f_3, \lambda f_1)$ for $\lambda \in \mathbf{R}_{>0}$, so the normalized eigenbundle is of the form $\pi : \mathbf{R}_{>0} \times E \to \mathbf{R}_{>0} \times S^1$, where E is a principal S^0 -bundle over S^1 .

There are only two principal S^0 -bundles over $S^1(up \text{ to isomorphism})$. The total space is a connected space, so the bundle is isomorphic to a Hopf bundle $S^0 \hookrightarrow S^1 \to S^1$.

Hermitian system

If we let $(f_3, f_1) \in U_1$ varies along the path $\{f_3^2 + f_1^2 = 1\}$, we may assume $(f_3, f_1) = (\cos \theta, \sin \theta)$, where $\theta \in [-\frac{\pi}{2}, \frac{\pi}{2}]$.

Then $\omega_{+}^{'}=1, \omega_{-}^{'}=-1$, and the eigenvectors can be written as:

$$\mathbf{v}_{+}^{'} = \begin{bmatrix} \cos \frac{\theta}{2} \\ \sin \frac{\theta}{2} \end{bmatrix}, \quad \mathbf{v}_{-}^{'} = \begin{bmatrix} -\sin \frac{\theta}{2} \\ \cos \frac{\theta}{2} \end{bmatrix}.$$

Zhou Fang, Wenhui Yang, Chenlu Huang

Hermitian system

Similarly, let $(f_3, f_1) \in U_2$ varies along the path $\{f_3^2 + f_1^2 = 1\}$, assume $(f_3, f_1) = (\cos \theta, \sin \theta)$, where $\theta \in [\frac{\pi}{2}, \frac{3\pi}{2}]$. We can know that

$$\mathbf{v}_{+}^{'} = \begin{bmatrix} \cos \frac{\theta}{2} \\ \sin \frac{\theta}{2} \end{bmatrix}, \quad \mathbf{v}_{-}^{'} = \begin{bmatrix} -\sin \frac{\theta}{2} \\ \cos \frac{\theta}{2} \end{bmatrix}.$$

Hence, we can see that the eigenstates of a Hermitian system can be visualized as:

Set-up for Non-Hermitian systems

For a non-Hermitian system, denote the matrix and the eigenvalues by

$$H_2 = H_2(f_2, f_3) = \begin{bmatrix} f_3 & f_2 \\ -f_2 & -f_3 \end{bmatrix}, \omega_{\pm} = \pm \sqrt{f_3^2 - f_2^2}.$$

It has a double root if and only if $f_2 = \pm f_3$. As a parameter space for this Hamiltonian H_2 , the f_2f_3 -plane becomes a stratified space:

For a non-Hermitian system, $H_2 = H_2(f_2, f_3) = \begin{bmatrix} f_3 & f_2 \\ -f_2 & -f_3 \end{bmatrix}$, $\omega_{\pm} = \pm \sqrt{f_3^2 - f_2^2}$. Let $W_1 = \mathbf{R}^2 - \{(f_3, 0), f_3 \le 0\}$, $W_2 = \mathbf{R}^2 - \{(f_3, 0), f_3 \ge 0\}$, then we know that $W_1 \cup W_2 = \mathbf{R}^2 - \{(0, 0)\}$. In W_1 ,

$$v_{+} = \frac{1}{\|*\|} \begin{bmatrix} -f_{3} - \sqrt{f_{3}^{2} - f_{2}^{2}} \\ f_{2} \end{bmatrix}, v_{-} = \frac{1}{\|*\|} \begin{bmatrix} -f_{2} \\ f_{3} + \sqrt{f_{3}^{2} - f_{2}^{2}} \end{bmatrix}.$$

In W_2 ,

$$v_{+} = rac{1}{\|*\|} egin{bmatrix} -f_{2} \ f_{3} - \sqrt{f_{3}^{2} - f_{2}^{2}} \end{bmatrix}, v_{-} = rac{1}{\|*\|} egin{bmatrix} f_{3} - \sqrt{f_{3}^{2} - f_{2}^{2}} \ -f_{2} \end{bmatrix}$$

And the transition map of v_+ from W_1 to W_2 can be written by

$$t_{+} = \begin{cases} 1, & f_{2} > 0 \\ -1, & f_{2} < 0 \end{cases}$$
(2)

Meanwhile, the transition map t_- of v_- from W_1 to W_2 has the same formula as v_+ .

Zhou Fang, Wenhui Yang, Chenlu Huang

Real eigenvalues

We first consider the situation when two eigenvalues are real, i.e, $f_3^2 - f_2^2 > 0$. Again, let (f_3, f_2) varies along the path $\{f_3^2 + f_2^2 = 1\}$.

In $W_1 \cap \{f_3^2 + f_2^2 = 1\} \cap \{f_3^2 - f_2^2 > 0\}$,

$$v_{+} = \frac{1}{\sqrt{2f_{3}^{2} + 2f_{3}\sqrt{f_{3}^{2} - f_{2}^{2}}}} \begin{bmatrix} -f_{3} - \sqrt{f_{3}^{2} - f_{2}^{2}} \\ f_{2} \end{bmatrix},$$
$$v_{-} = \frac{1}{\sqrt{2f_{3}^{2} + 2f_{3}\sqrt{f_{3}^{2} - f_{2}^{2}}}} \begin{bmatrix} -f_{2} \\ f_{3} + \sqrt{f_{3}^{2} - f_{2}^{2}} \end{bmatrix}.$$

Zhou Fang, Wenhui Yang, Chenlu Huang

Topology and geometry of singularities

24 / 51

First if we look in a 2-dimensional plane, when θ ranges from $-\frac{\pi}{4}$ to $\frac{\pi}{4}$, we have

Figure 4: When $\theta = -\frac{\pi}{4}$, $v_+ = -v_-$, then v_+ travels clockwise while v_- travels counterclockwise, When $\theta = 0$, $v_+ \perp v_-$, and $v_+ = v_-$ when $\theta = \frac{\pi}{4}$.

Zhou Fang, Wenhui Yang, Chenlu Huang

Moreover, the eigenbundle can be then visualized as below.

Similarly, when θ ranges from $\frac{3\pi}{4}$ to $\frac{5\pi}{4}$,

Figure 5: When $\theta = \frac{3\pi}{4}$, $v_+ = v_-$, then v_+ travels counterclockwise while v_- travels clockwise, When $\theta = \pi$, $v_+ \perp v_-$, and $v_+ = -v_-$ when $\theta = \frac{5\pi}{4}$.

Zhou Fang, Wenhui Yang, Chenlu Huang

For the part where θ ranges from $\frac{3\pi}{4}$ to $\frac{5\pi}{4}$, we can visualize it in a same manner.

Put them together, we can get:

Figure 6: The right one corresponds to $\theta \in [-\frac{\pi}{4}, \frac{\pi}{4}]$, and the left one corresponds to $\theta \in [\frac{3\pi}{4}, \frac{5\pi}{4}]$.

Zhou Fang, Wenhui Yang, Chenlu Huang

If $f_2^2 - f_3^2 < 0$, two eigenvalues then become pure imaginary number, i.e.,

$$\omega_{+} = i\sqrt{f_{2}^{2} - f_{3}^{2}}, \quad \omega_{-} = -i\sqrt{f_{2}^{2} - f_{3}^{2}}$$

The two corresponding eigenvectors have the form of

$$v_{+} = rac{1}{\sqrt{2}|f_{2}|} egin{bmatrix} -f_{3} - i\sqrt{f_{2}^{2} - f_{3}^{2}} \ f_{2} \end{bmatrix}, \quad v_{-} = rac{1}{\sqrt{2}|f_{2}|} egin{bmatrix} -f_{3} + i\sqrt{f_{2}^{2} - f_{3}^{2}} \ f_{2} \end{bmatrix}.$$

Zhou Fang, Wenhui Yang, Chenlu Huang

Let $\vec{a} = (a_1, a_2, \dots, a_n), \vec{b} = (b_1, b_2, \dots, b_n)$, where $a_i, b_j \in \mathbb{C}$. $\vec{A} = (A_1, A_2, \dots, A_{2n}), \vec{B} = (B_1, B_2, \dots, B_{2n})$, where $A_{2i-1} = Re(a_i), A_{2i} = Im(a_i), B_{2i-1} = Re(b_i), B_{2i} = Im(b_i)$.

• Euclidean angle:
$$\cos(\vec{a}, \vec{b}) = \frac{(A,B)}{|A||B|}$$
.

• Hermitian angle

Recall the Hermitian inner product of \vec{a}, \vec{b} is $(\vec{a}, \vec{b})_{\mathbf{C}} = \sum_{i=1}^{n} a_i \overline{b_i}$, it is a complex number, so we may assume $\frac{(\vec{a}, \vec{b})_{\mathbf{C}}}{|\vec{a}||\vec{b}|} = \rho e^{i\psi}$, where $0 < \rho \leq 1$ and $0 \leq \psi \leq 2\pi$. Hence Hermitian angle: $\cos_H(\vec{a}, \vec{b}) = \rho$.

• Pseudo-angle is defined to be ψ .

• Kähler angle

Let
$$\vec{A'} = (-A_2, A_1, \cdots, -A_{2n}, A_{2n-1}), \vec{B'} = (-B_2, B_1, \cdots, -B_{2n}, B_{2n-1})$$
, where $A_{2i-1} = Re(a_i), A_{2i} = Im(a_i), B_{2i-1} = Re(b_i), B_{2i} = Im(b_i).$
Then

$$\cos_{\mathcal{K}}(\vec{a},\vec{b})\sin\left(\vec{a},\vec{b}\right) = \cos_{\mathcal{K}}(\vec{A},\vec{B})\sin\left(\vec{A},\vec{B}\right) = \cos\left(\vec{A'},\vec{B}\right).$$

Zhou Fang, Wenhui Yang, Chenlu Huang

The Hermitian product of v_+ and v_-

$$\langle v_+, v_- \rangle = \frac{f_3}{f_2} \left(\frac{f_3}{f_2} + i \sqrt{1 - \left(\frac{f_3}{f_2}\right)^2} \right).$$

If we consider the Hermitian angle of v_+ and v_- , then we know $\cos_H \langle v_+, v_- \rangle = |\frac{f_3}{f_2}|$. The Kähler angle of two real vectors is $\frac{\pi}{2}$.

Zhou Fang, Wenhui Yang, Chenlu Huang

$$H[f_1, f_2, f_3] = \begin{bmatrix} 1 & f1 & f2 \\ -f1 & -1 & f3 \\ -f2 & f3 & -1 \end{bmatrix}$$

• 4 NLs and 2 NILs

They are two circles:

$$\begin{cases} f_1 = \cos t \\ f_2 = -\cos t \\ f_3 = 1 + \sin t \end{cases}, t \in [0, 2\pi) \\ f_3 = 1 + \sin t \\ \end{cases}$$
$$\begin{cases} f_1 = \cos t \\ f_2 = \cos t \\ f_3 = -1 + \sin t \end{cases}, t \in [0, 2\pi)$$

• 5 MPs

(0, 0, 0) $(\frac{2\sqrt{2}}{3}, -\frac{2\sqrt{2}}{3}, \frac{2}{3})$ $\left(-\frac{2\sqrt{2}}{3},\frac{2\sqrt{2}}{3},\frac{2}{3}\right)$ $(\frac{2\sqrt{2}}{3}, \frac{2\sqrt{2}}{3}, -\frac{2}{3})$ $\left(-\frac{2\sqrt{2}}{2},-\frac{2\sqrt{2}}{2},-\frac{2}{2}\right)$

Zhou Fang, Wenhui Yang, Chenlu Huang

$$\begin{cases} f_1 = \frac{1}{2} \cos t \\ f_2 = \frac{1}{2} \sin t \ , t \in [0, 2\pi) \\ f_3 = 0 \end{cases}$$

The eigenvalues are

$$\lambda_1 = -1, \lambda_2 = -\frac{\sqrt{3}}{2}, \lambda_3 = \frac{\sqrt{3}}{2},$$

and the corresponding eigenvectors are

$$v_1 = \begin{pmatrix} 0\\ -\tan t\\ 1 \end{pmatrix}, v_2 = \begin{pmatrix} (\sqrt{3}-2)\csc t\\ \cot t\\ 1 \end{pmatrix}, v_3 = \begin{pmatrix} -(\sqrt{3}+2)\csc t\\ \cot t\\ 1 \end{pmatrix}$$

Zhou Fang, Wenhui Yang, Chenlu Huang

Eigenstate for λ3

Zhou Fang, Wenhui Yang, Chenlu Huang

Loop2

$$egin{array}{ll} f_1 = \cos t \ f_2 = \cos t \ f_3 = 2 + \sin t \end{array}, t \in [0, 2\pi) \end{array}$$

The corresponding eigenvectors are

$$v_{1} = \begin{pmatrix} 0 \\ -1 \\ 1 \end{pmatrix}, v_{2} = \begin{pmatrix} \frac{1}{4}(\sqrt{-14 - 18\cos 2t}\sec t + 2\tan t) \\ 1 \\ 1 \end{pmatrix}$$
$$v_{3} = \begin{pmatrix} \frac{1}{4}(-\sqrt{-14 - 18\cos 2t}\sec t + 2\tan t) \\ 1 \\ 1 \end{pmatrix}$$

 Principal bundles, Hopf bundles and eigenbundles, Barbara Roos. https://www.math.uni-tuebingen.de/de/forschung/maphy/personen/dr-barbararoos/doc/theses/roos_semester_project.pdf
 Non-Abelian band topology in noninteracting metals, Wu, QuanSheng and Soluyanov, Alexey A. and Bzdušek,Tomáš.
 Angles in Complex Vector Spaces, Scharnhorst, K.

Thanks!