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Motivation



Physical background

Hamiltonian is a matrix corresponding to the system we considered.

a11 a2 a3

) ] eigenvalue: energy
Hamiltonian H = |a>; a»n a3

eigenvector: state
431 a3 ass

If Hamiltonian is parametrized, such as parametrized by temperature T:

a11(T) aw2(T) a13(T)
H( T) = |ao1 (T) dno (T) a3 (T)
a31(T) a2 (T) a3 (T)
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We can draw the energy band
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Figure 1: Energy bands

n-band: n is the number of eigenvalues
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Figure 2: Gapless or Gapped

T1: singular points (points where eigenvalues degenerate)
H(Ty) : gapless Hamiltonian
H(T) : gapped Hamiltonian

Exotic phenomina emerge at singular points, so whether a loop in parameter space

touches singular points is considerable.
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Consider the matrix

f3,f2€R

Draw the degeneracy line:

Wt Leks

'

Figure 3: Degeneracy line
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f=-h % loop L

LoopL

XX

Zhou Fang, Wenhui Yang, Chenlu Huang

54,

'

The following numbers means the number

of eigenvalues
e Typel: 2

e Typel:2—-1—-2—-1—-2—1—
2=51—=2

e Typelll: 1
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Goal: Algebraic topology (computable invariants) for those loops to classify the
evolution of eigenvalues and eigenstates.
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Goal: Algebraic topology (computable invariants) for those loops to classify the
evolution of eigenvalues and eigenstates.

There are many cases: Hermitian/non-Hermitian, 2-band/3-band/n-band, whether

loop can intersect singular points,- - -
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D,-bundle over SO(3)/D;




Physical picture for this bundle

e A 3-band gapped Hermitian Hamiltonian can be written as H = Zf’zlj ‘uf> <uf‘

e H can be determined by a set of “right hand” orthonormal vectors
(‘u1>, ’u2>, ‘u3> form an element in SO(3))
H is unchanged for two of eigenvectors fIip:’uj> — — ’uj>(modu|o D).
e H can be describe by SO(3)/D»
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Consider the bundle

D, < SO(3) = SO(3)/D2 =: X, 7(x) =X
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Goal: The isomorphism classes of principal D,-bundles over X are denoted by
Prinp,(X) and Prinp,(X) =~ [X, BD2] where BD; is the classifying space of D,. The
following will show which ¢ € [X, BD;] corresponds to the principal Dy-bundle we

considered.
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We need to find ¢ : X — Gri(R*) x Gri(R*), such that 7 : SO(3) — X appears in
the pullback of ¢ and f x f:

50(3) E— Vl(ROO) X Vl(ROO) = ED2

s [

X T Grl(Roo) X Grl(Roo) = BD2
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Claim: ¢ : SO(3)/D> — Gri(R*) x Gri(R*>) is

¢ lcv z(span([a 00 -~D,span<[b 0 0 ])
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The pullback of ¢ and f x f is constructed as:

a a
S=Xxpp, EDo={]| | b |,(vi,v2) [[| b | € X,(v1,v2) € Vi (R?) x V1 (R%),
C

span({a 00 ~--D:span(v1),span<[b 00 ---]>=Span(V2)}

Since vy, v» are orthonormal, we have v; = [£3,0,0,---], vo = [£b,0,0,---].
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2-band Hermitian systems



Set-up for Hermitian systems

For a Hermitian system, denote the matrix and the eigenvalues by

/ / f f /
Hy = Hy(f1, ) = [fi _1’%] , Wy ::t\/f12+f32.

It has two distinct eigenvalues when (f3, f1) # (0,0). So a parameter space for this
Hamiltonian H, is R? — {(0,0)}:

— Path
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Hermitian system

/ / fz ,
For a Hermitian system, H, = H,(fi,f3) = [3 1)(] , the eigenvalues
1 —f3
Wy =+/f2 + 2
Let Uy = {R? — {(3,0), 3 < 0}}, U» = {R? — {(£,0), f3 > 0}}, then we know that
Uiu Uy = RZ — {(0,0)}

In Ui, the corresponding eigenvectors are

i ——
Vi = : PEVETE|
\/2(ﬂ2+@2)+2f3\/f12+f32 - ! -

’ 1 - f]-
vV =

- B+ R2+ ]
\/2("12+f32)+2f3\/f12+f32 -3+m-
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Hermitian system

In Us,
7 1 f
V+ = )
—f 4+ /2 +F2
\/2(f12 + 1) = 2fy\/ iR+ £ PV
VL = ! f3 N V f12 + f32 5
R s fEigt B
The transition map of vjr, v is
1, A>0
ty = (1)
-1, A<0
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Hopf bundle

' 1 f
V+ =
—f+ /2 + 2
\/2(f12+f32)—2f3\/f12+f32 STV

Notice that vjr, v__ are invariant under scaling (3, f1) — (A, A1) for A € R, so the

normalized eigenbundle is of the form 7 : Rug x E — Rsg x S!, where E is a principal
S%bundle over S*.

There are only two principal S°-bundles over S'(up to isomorphism). The total space

is a connected space, so the bundle is isomorphic to a Hopf bundle S® — S — S1.
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Hermitian system

If we let (f3, 1) € Uy varies along the path {f32 + 2 = 1}, we may assume
(f3,f1) = (cosf,sin @), where 0 € [—Z

212
/ / . .
Then w, =1,w_ = —1, and the eigenvectors can be written as:
/ cos g / —sin g
v, = v =
+ sin |’ T cos 2
2 2
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Hermitian system

Similarly, let (3, fi) € Uy varies along the path {f2 + f2 = 1}, assume
(3, f1) = (cosB,sin ), where 6 € [Z,3F]. We can know that

272
/ cos ¢ / —sin?
Vo= 2 v o= 2
+ — R ) - — 0
sin 3 CoS 3

2 2

Hence, we can see that the eigenstates of a Hermitian system can be visualized as:

I Eigenstate for w-
I Eigenstate for w-
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2-band non-Hermitian systems




Set-up for Non-Hermitian systems

For a non-Hermitian system, denote the matrix and the eigenvalues by

fof
H2_H2(f2,f3)_[ E;, i],wi—i\/r‘f—ff
—fh —f

It has a double root if and only if f, = +f3. As a parameter space for this Hamiltonian
H>, the f>f3-plane becomes a stratified space:

////
\ e
e Is
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Non Hermitian system

f- f;
For a non-Hermitian system, Hy = Ha(f, f3) = [ 3} 2{] , Wt = 4/ 7‘32 — 2.
—I2 —I3

Let Wi = R?> — {(f,0),f3 <0}, W,y =R?—{(f,0),f > 0}, then we know that
Wi U Ws = R? — {(0,0)}.

|nW1,
1 £ 2 _ f£2
e [7% \f/fg 6],V_:
2

|l

—i
f?,_'_ /f32_f22]'

_ 1 —h _ 1 BB -F
ST A I Y ‘
3—\/13 — 13 —h
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Non Hermitian system

And the transition map of v from Wi to W5 can be written by

1, >0 2)
t, —
T -1, KB<o0

Meanwhile, the transition map t_ of v_ from Wi to W5 has the same formula as v, .
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Real eigenvalues

We first consider the situation when two eigenvalues are real, i.e, f2 — £ > 0.
Again, let (f3, f) varies along the path {f? + £ = 1}.
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In Wi N {fZ+ 7 =1}yn{fE - £ >0},

V4 = )
\/2132 +of [ 8 f

1 —h
> |f \/f2—f2]'
\/2%2+2)% f32_f22 3+ g 2

V_ =
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First if we look in a 2-dimensional plane, when 6 ranges from —% to %, we have

— Eigenvector v+
Eigenvector v-

05

Figure 4: When 6 = —7, v, = —v_ then v, travels clockwise while v_ travels
counterclockwise, When # = 0,v, 1 v_, and v; = v_ when 0 = L.
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Moreover, the eigenbundle can be then visualized as below.

L] eigenstates for w+
L] eigenstates for w-
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s e 3 57
Similarly, when 6 ranges from = o 2

— Eigenvector v+
Eigenvector v~

~_ |

Figure 5: When 0 = 37”, vy = v_,then v, travels counterclockwise while v_ travels clockwise,

When 6 =7, vy L v_, and vy = —v_ when § = 57“ .
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For the part where 6 ranges from 37” to 57”, we can visualize it in a same manner.

L] eigenstates for w+
L] eigenstates for w-
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Put them together, we can get:

Figure 6: The right one corresponds to 6 € [—7, 7], and the left one corresponds to

6 €3, 2]

Zhou Fang, Wenhui Yang, Chenlu Huang
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L] eigenstates for w+
I eigenstates for w-
[ eigenstates for w+
[ eigenstates for w-
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Complex eigenvalues

If ;‘22 — f32 < 0, two eigenvalues then become pure imaginary number, i.e.,

N R )

The two corresponding eigenvectors have the form of

1 |—fB—i\/f—1f} , 1 |—fi+iy/f}— 12

Vi = y —
MVGTT f, V2|6 f,
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Angles in complex vectors

Let &= (a1, a2, - ,a,,),I;: (b1, b, -+, bp) , where aj, b; € C.

A’: (A17A27 e A2n) B = (817 827 e ;BZn) ' where AZI 1 — Re( ) A2I - /m(ai)7
B2l 1— Re(b) BZI - (bl)

- =

e Euclidean angle: cos (4, ): G

e Hermitian angle
Recall the Hermitian inner product of 3, b is (3, b)c = S7_, aibj, it is a complex
number, so we may assume ﬁ = pe'¥, where 0 < p<1and0 < <2r.
Hence Hermitian angle: cosy (&, b) = p.

e Pseudo-angle is defined to be ).
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Angles in complex vectors

o Kahler angle

Let A' = (—Az, A1, -+, —Aon, Aon_1), B/ = (B2, B1,- - , —Ban, Ban_1) , where
A2,'_1 = Re(a,-),AQ; = Im(a;), B2,‘_]_ = Re(b;), Bz,‘ = Im(b,-).
Then

-, —,

cosk (3, b)sin (&, b) = cosk (A, B)sin (A, B) = cos (A, B).
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Computations

The Hermitian product of v4 and v_

Bilh., [ B2
) = — — 1— —
<V+7V> f'2 f'2+l (f’2)

If we consider the Hermitian angle of v4 and v_, then we know cosy (v4,v_) = |%|
The Kahler angle of two real vectors is 7.
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3-band non-Hermitian systems




3-band non-Hermitian systems

1 f1 12
R — HifL B fl= |—f1 —1 3
N —f2 3 -1

double root
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3-band non-Hermitian systems

e 4 NLs and 2 NILs

They are two circles:

fi = cost

fp =—cost ,te]0,2m)

fs3=1+sint

fi = cost

f, = cost ,t €1[0,2m)
f3=—1+sint
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3-band non-Hermitian systems

e 5 MPs
(0,0,0)

2v2  2¢/2 2
G553

2v2 2v/2 2
=353
2V2 22 2
573
2V2 22 2

C5o5 73
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1
f1:§cost
fz—lsint ,t € [0,2m)
2
3=0

Topology and geometry of singularities
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The eigenvalues are

)

V3 V3
)\1:_17)\2:_77)\3:7

and the corresponding eigenvectors are

0 (V3 —2)csct —(V3+2)csct
vi=|—tant|,»= cot t V3 = cott
1 1 1
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Traces of eigenstates

— Eigenstate for A1
Eigenstate for A2
Eigenstate for A3
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Vector bundles of Loopl

kL Eigenstate for A1
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Vector bundles of Loopl

L Eigenstate for A2
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Vector bundles of Loopl

I Eigenstate for A3
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1 1
L= Ecos(zﬂ—kt)

1 1
fzzisin(#r%-t) ;< [0,m)
f=0

1
fi=—=cost

2v/2

1
fp = ——cost,t € [m2m)

22

1
f3:—§sint
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Vector bundles of Loop2

Ll Eigenstate for A1
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Vector bundles of Loop2

L Eigenstate for A2
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Vector bundles of Loop2

I Eigenstate for A3

Zhou Fa Wenhui Yang, Chenlu H Topology and geometry of singularities 47 / 51



fi = cost
f» = cost , t €[0,2m)
f3=2-+sint
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The corresponding eigenvectors are

0 7(v/—14 —18cos2tsect + 2tan t)
Vi = -1 , Vo = 1
1 1

7(—v/—14 — 18cos2tsect + 2tant)
vz = 1
1
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— _-(V 2 \f -7-9cos(2t) sec(!)+2tan(!})
4
(-\‘ 2 \/-7-9cas(2f) sec(t)+2tan(l)]

4

Topology and geometry of singularities
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Thanks!
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