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Abstract

In this article we discuss the topological classification of configuration
of eigen vectors and eigenvalues of 2-band and 3-band Hermitian and
pseudo Hermitian Hamiltonian.
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1 Introduction

Topological singularities, arising from points with degenerate eigenvalues in a
parametrized HamiltonianH, are fundamental to many areas of modern physics.
These singular points, which include well-known examples such as Weyl and
Dirac points and nodal lines, are associated with rich physical phenomena, in-
cluding topological edge modes and chiral Landau levels. These physical sys-
tems can be probed and classified by considering loops in the moduli space of
the Hamiltonian, an approach rooted in algebraic topology. The classification
of these loops provides insight into the behavior and evolution of eigenvalues
and eigenvectors, offering a deeper understanding of the underlying physical
systems.

This research seeks to apply algebraic topology, particularly computable in-
variants, to classify these topological singularities. By focusing on the algebraic
and geometric aspects of the problem, we aim to develop a comprehensive frame-
work for understanding the role of topological singularities in various physical
contexts.

In Section 2, we first introduce the pioneering work by Mermin. His work
motivates many of our ideas. In Section 3, we formulate our problem: classify
the topology of configuration of eigenvalues and eigenspaces. In Section 4, we
detail discuss three topological invariants using three different methods and
compare them in Section 4.4. In Section 5, we provide two methods to classify
the 3-band Hermitian Hamiltonian. Both methods are the generalization of
methods in Section 4. Then comes the pseudo-Hermitian case. Section 6 uses
symmetry of the eigen polynomials to recover the results in [12]. We discuss the
generalization of this method in Section 7. Then we use intersection homology
to extract topological information of the parameter space of the parametrized
matrix in Section 8.

2 Backgrounds

The literature on topological singularities is extensive, with significant contri-
butions across multiple domains. In this section, we briefly review the theory
of topological defects established by Mermin in [13], whose pioneering work laid
the foundation for this field of research.
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Definition 2.1. Let S be the space of the state at a point, the element in S

is called order parameter and S is called ordered parameter space. An ordered
medium can be described by a map f : M→ S, where M is a space.

Example 2.2. (Planar spins) Take M be a region in R3. Take S be S1, a
circle. Let f : M→ S1 defined as f(r) = eiϕ(r) where ϕ : R3 → [0, 2π).

This means we assign each point in the M a unit vector in a plane.

Example 2.3. (Ordinary spins) Take M be a region in R3. Take S = S2,
a 2-dimension sphere. Let f : M → S2 defined as f(r) = (ux(r), uy(r), uz(r))
where ux, uy, uz are three real functions over M satisfying u2x + u2y + u2z.

This means we assign each point a 3-dimensional unit vector.

Example 2.4. (Nematic liquid crystals) Take M be a region in R3. Take
S = {lines through origin in R3} =: RP2, the projection space. Let f : M →
RP2 defined as the composition of the maps

M→ R3 →M3×3(R)

r 7→ n̂(r) 7→ n̂(r)n̂(r)T

The second map is a two to one map, since ±n̂ maps to the same order
parameter in S.

This means we assign each point in M a line (or headless vector).

Example 2.5. (Biaxial nematics) Take M be a region in R3. Take S =
{rectangular box with fixed size centered at oringin in R3}.

S = SO(3)/D2, so an order medium meets above requirements is a space M

with a map f : M→ S.

Example 2.6. (Dipole-locked A phase of superfluid helium-3) TakeM be
a region in R3. Take S = {distinguished orthonormal axes}. Since distinguished
orthonormal axes can be viewed as two orthonormal sticks, S = SO(3).

Next we consider the special case of Brillouin zone BZ. Let H : BZ → S

be a map assigning each k ∈ BZ to a Hamiltonian. Let ι : Sp → BZ be a null
homotopic embedding. So [H ◦ ι] ∈ πp(S). If ι(Sp) enclose a node in space S,
ι(Sp) cannot contract to a point and thus [H ◦ ι] ̸= 0.

Definition 2.7. We call [H ◦ ι] ∈ πp(S) be a topological charge of the node.

Example 2.8. (Planar spins) π1(S1) = Z, by winding number.

Example 2.9. (Ordinary spins) Take M be a region in R3. Take S = S2.
Since all loops on S2 can be shrink to a constant loop, we have π1(S

2) = 0.

Example 2.10. (Nematic liquid crystals) π1(RP2) = π1(S
2/Z2) = Z2

To figure out the case in biaxial nematics, we need the following useful fact.
A detailed proof can be seen in [18].
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Fact 2.11. G is a path-connected and simply connected Lie goup and H is a
normal group of G. Then

π1(G/H) = π0(H) = H/H0

π2(G/H) = π1(H
0)

where H0 is the connected component containing identity.

Example 2.12. (Biaxial nematics) π1(SO(3)/D2) = π1(∼= SU(2)/D2) =
π0(D2) = π0Q = Q.

π2(SO(3)/D2) = π1(Q
0) = 0

Example 2.13. (Dipole-locked A phase of superfluid helium-3) π1(SO(3)) =
π1(RP3) = π1(S

4/Z2) = Z2

When the space is not based, we consider the free homotopy equivalence
between maps and then the homotopy group is classified by free homotopy.

Theorem 2.14. Let X be a space. Let f based at x, g based at y be two
representation elements of π1(X). Then f ≃ g by free homotopy if and only if
there exists a path isomorphism c taking [f ] ∈ π1(X,x) to [g] ∈ π1(X, y).

This theorem suggests that: Two loops in ordered parameter space are freely
homotopic if and only if they are characterized by the same conjugacy class of the
fundamental group. Since fusion of nodes corresponds to charge multiplication,
it is determined by multiplication rule of conjugacy class.

Example 2.15. (Multiplication table for quaternian group Q) The quater-
nian groupQ has following conjugate class: C0 := {1}, C0 := −1, Cx := {±iσx},
Cy := {±iσy}, Cz := {±iσz}. The multiplication table [13] are as following:

× C0 C0 Cx Cy Cz

C0 C0 C0 Cx Cy Cz

C0 C0 C0 Cx Cy Cz

Cx Cx Cx 2C0 + 2C0 2Cz 2Cy

Cy Cy Cy 2Cz 2C0 + 2C0 2Cx

Cz Cz Cz 2Cy 2Cx 2C0 + 2C0

From the table, we observe that most results in the table consists of unique
conjugate group except for some cases where the result is an addition of two
conjugate class. That means the result is not unique when we do mutiplication.

Note that the multiplication of two defects is a path connecting two defects
and let two defects fusion to another defect along this path. The non unique
result is rooted in the non unique way of this path passing through other defects.

Example 2.16. Since −(iσx) = (iσy)(iσx)(iσy)
−1, the x defect can converted

to its antidefect by passing through y defects. Hence there are two ways to
multiplicate two x defects to obtain different results: the first is trivially mul-
tiplicate two x defects, we obtain a nontrivial defect; the second is multiplicate
two x defects by passing through y defects, we obtain a trivial defect.
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We stop introduction to Mermin’s study here. Mermin’s work introduce ho-
motopy theory into the classification of nodes in band, and later more and
more topological tools are applied in this problem, for example, [18], [16],
[8],[9],[10],[11].

Mermin’s work is studying the topology of ordered medium. In this article,
we’ll focus on the topology of the configuration of eigenvectors and eigenvalues
of parametrized Hamiltonians.

3 Topology of energy bands

The topology of energy bands is the topology of the configuration of eigenvalues
and eigenspaces.

Example 3.1. Consider the matrix H =

[
f3 f2
−f2 −f3

]
, f3, f2 ∈ R. We

devided the f3 − f2 plane into three regions: Let X0 := {(0, 0)}, X1 :=
{(f3, f3), (f3,−f3)|f3 ∈ R}, X2 := R2. Let λ± be two eigenvalues and E(λ)
be the eigenspace.

• X0: λ+ = λ− = λ, dim(E(λ)) = 2

• X1 −X0: λ+ = λ− = λ, dim(E(λ)) = 1

• X2 −X1: λ+ ̸= λ−, dim(E(λ±)) = 1

It’s a stratified space with each stratum characterizing different behavior of
eigenvalues and eigenvectors.

Definition 3.2. If a point in parametrize space dose not have n distinct eigen-
values, we say it is a singular point.

Example 3.3. (The swallowtail)

Consider the parametrized matrix H =

−f1 − f2 + 1 −f1 −f2
f1 f1 + f3 −f3
f2 −f3 f2 + f3

,
f1, f2, f3 ∈ R.

The singular points locally look like a swallowtail [8], see Fig1.
The swallowtail has four singular lines and one of them is an isolated singular

line; there is one singular point (meeting point) at the origin. Similarly as
previous example, the swallowtail is also a stratified space, see [8].

4 2-band Hermitian Hamiltonians over R
In this section we only consider Hermitian Hamiltonian over R. 2-band Hermi-
tian Hamiltonian over R is the most simple examples which is also significant.
The following ways we only consider loops in gapped region to detect singular
points. In this section we provide several ways of classifying singular points by
considering loops not intersecting with singular points.
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Figure 1: The swallowtail space

4.1 Classifying I: Hopf bundles over R
This section will first review discussion in Section 5.1 in [15], and then apply it
to our problem.

Let PrinG(S
n) be a collection of all principal G-bundles over Sn. Since

PrinG(S
n) ≃ πn−1(G), we have PrinS0(S1) ≃ π0(S

0) = {±1}. So there are
only two principal S0-bundles over S1 (up to isomorphism). More precisely, the
two principal S0-bundles over S1 are

• trivial bundle: S0 → S1 × S0 → S1 (total space is disconnected)

• Hopf bundle: S0 → S1 h−→ S1 (total space is connected), where h : S1 →
S1, (x1, x2) 7→ (2x1x2, x

2
1 − x22).

Hence, show that a principal S0-bundle over S1 a Hopf bundle is equivalent
to show that the total space is connected.

Property 4.1 (Property 4.2 in [15]). If we have:
(a) M is a smooth manifold
(b) H(p) is a complex Hermitian n × n matrix depending smoothly on the

parameter p ∈M
(c) U is an open subset of M fulfilling eigenspace of k-th eigenvalue is one

dimensional
Then one can define a principal U(1)-bundle (or an S0-bundle) consisting

of normalised of eigenvectors to the k-th eigenvalue of H(p) for all p ∈ U . □

Remark 4.2. Let ψ be a physical state, then ψ and λψ ∀λ ∈ U(1) corre-
sponding to the same state. This physical meaning motivates the existence of
U(1)-bundle in above theorem.

Every symmetric real 2× 2 matrices can be written as
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A (a, b, c) =

[
a+ c b
b a− c

]
, which has eigenvalues λ± = a±

√
c2 + b2

Consider the eigenbundle corresponding to eigenvalue λ+.
There is no global representation of normalized eigenvector of λ+, so we

define two open sets: let U1 := R2−{(0, c)|c ⩽ 0} and U2 := R2−{(0, c)|c ⩾ 0}.
In U1, the normalized eigenvector of λ+ is

v1 (a, b, c) =
1√

2 (b2 + c2) + 2c
√
c2 + b2

(
c+
√
b2 + c2

b

)

and in U2, the normalized eigenvector corresponding to λ+ is

v2 (a, b, c) =
1√

2 (b2 + c2)− 2c
√
c2 + b2

(
b

−c+
√
b2 + c2

)

Observation: vi(a, b, c) is independent of a and only depends on b/c, i =
1, 2.

Example 4.3. On the line b = 2c, we have

ϕ− =

[
1−

√
5

2
1

]
, ϕ+ =

[
1+

√
5

2
1

]
, c > 0

ϕ− =

[
1+

√
5

2
1

]
, ϕ+ =

[
1−

√
5

2
1

]
, c < 0

□

Therefore, there is a change of base space:

The base space R3 − 0
can change to−−−−−−−−−→ R× R>0 × S1, see Fig2

The “coordinate” a and r is redundancy, so the eigenbundle is of the form:

π0 : R× R>0 × E → R× R>0 × S1, (a, r, x) 7→ (a, r, π(x))

Where π : E → S1 is a S0-bundle over S1. In the following, we only focus on
S0-bundle π : E → S1.

Property 4.4. v1 defines a local section of E over S1.

Proof. We want to show πv1|S1 = id, i.e., πv1(x) = x, ∀x ∈ S1. It suffices to
show v1(x) ∈ π−1(x). Since π−1(x) is the fiber, and v1(x) is the first eigenvector
at x, we have v1(x) ∈ π−1(x) by construction of eigenbundle.
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R3 −→ R× R× S1

(a, b, c) 7→ (a, r, x)

a :same a in (a, b, c)
r :strech r > 0 times
x :a point x in S1

(a, r, x)

x
rx

a

Figure 2: Change base space

Recall that vi(a, b, c) = vj(a, b, c)tji(a, b, c), i, j = 1, 2, where t12 and t21 are
transition functions defined on U1∩U2 = R2−{(0, c)|c ∈ R}. Since eigenvectors
only depends on b/c, it suffices to consider them on the circle b2 + c2 = 1.

v1(a, b, c) =
1√

(c+ 1)2 + b2
[
c+ 1
b

] =
1√

b2(c+ 1)2 + b4

[
|b| (c+ 1)

b2

]

v2(a, b, c) =
1√

(−c+ 1)
2
+ b2

[
b

−c+ 1

]
=

1√
b2 (c+ 1)

2
+ (1− c2)2

[
b (c+ 1)
1− c2

]

=
1√

b2 (c+ 1)
2
+ b4

[
b(c+ 1)
b2

]
Hence,

When b > 0, t12(b, c) = t21(b, c) = 1

When b < 0, t12(b, c) = t21(b, c) = −1

Property 4.5. The total space is connected, and thus the bundle is isomorphic
to the Hopf bundle.

Proof. By Property 2.23 in [19]: If U is a connected covering of a topological
space X and X has a subset A with A ∪ Ui ̸= ∅ for any Ui ∈ U, then X is
connected.

Denote V1 = S1 − {(0,−1)} and V2 = S1 − {(0,+1)}. Note that v1|V1
:

V1 → v1(V1) and π|v1(V1) : v1(V1)→ V1 are inverse, because v1 are local sections
of E over S1(meaning that v1 is injective). So as v2|V2

and π|v2(V2). π−1 is
continuous and π−1(Vi) is connected, so {π−1(Vi)} is a connected covering of
E. Then we have π−1(V1) ∪ π−1(V2) = π−1(V1 ∪ V2) = π−1(S1) = E. Define
H = {(b, c)|b > 0} ⊂ V1∩V2 is a connected subset. We’ve proved vitij = vj and
tij = 1 for b > 0. So v1(H) = v2(H) =: v(H). v(H) ∩ π−1(Vi) ̸= ∅, i = 1, 2.
Using the property above, E is connected. Thus E is a hopf bundle.
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We summarize above discussion by the following theorem:

Theorem 4.6. Let

A (a, b, c) =

[
a+ c b
b a− c

]
, which has eigenvalues λ± = a±

√
c2 + b2

be a symmetric real matrix where (a, b, c) ∈ R3. Then there is a S0-bundle over
R3 − {(a, 0, 0)|a ∈ R} with fiber being the eigenspace to the first wigenvalues.
Then this bundle over any loops enclose â-axis is a hopf bundle while over the
loop not enclose â-axis is a trivial bundle, see Fig3.

Replacing first eigenvalues to second eigenvalues, the statement is also true.
□

â
â

b̂

ĉ

Hopf bundle

Trivial bundle

Figure 3: 2-band Hermitian Hamiltonian

It leads to that the eigenvector of first (resp. second ) eigenvector turn to its
inverse after the parameter evolves along the whole round of the loop enclosing
â-axis. A summary is in table1.

Loop Enclose â Not enclose â
bundle of first/second eigenspace hopf trivial

state of first/second eigenvector after rotation around the loop inverse initial

Table 1: classifying of loops

4.2 Classifying II: Fundamental group of moduli space

In classifying I, we consider two eigenvectors separately, which is useful when
two eigenvectors have high symmetry. In this section, we provide the second
classification considering two eigenvectors simultaneously.

In order to more clearly represent the underlying physical meaning, we in-
troduce a different notation from that employed in the previous section.
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We denote eigenvetor associated to eigenvalue ω± by ϕ±.
Recall any Hermitian 2× 2 matrix H can be represented by Pauli matrix:

σ1 =

[
0 1
1 0

]
, σ2 =

[
0 −i
i 0

]
, σ1 =

[
1 0
0 −1

]
i.e., H2 = f0I + f1σ1 + f2σ2 + f3σ3

With PT-symmetry (to make H2 real), f2 = 0. So the Hamiltonian takes
the form

H2 =

[
f0 + f3 f1
f1 f0 − f3

]
Its eigenvalues and eigenvectors are:

(f1 ̸= 0)ω− = f0 −
√
f1

2 + f3
2 , ω+ = f0 +

√
f1

2 + f3
2

ϕ− =

[
−−f3+

√
f12+f32

f1

1

]
, ϕ+ =

[
−−f3−

√
f12+f32

f1

1

]
(f1 = 0, f3 < 0)ω− = f0 − |f3|, ω+ = f0 + |f3|

ϕ− =

[
1
0

]
, ϕ+ =

[
0
1

]
(f1 = 0, f3 > 0)ω− = f0 − |f3|, ω+ = f0 + |f3|

ϕ− =

[
0
1

]
, ϕ+ =

[
1
0

]
Since eigenvectors are independent on a, so we assume a = 0.
We first depict eigenspace spanned by ϕ−(blue) and ϕ+(red) in Fig4, where

the short sticks denotes 1-dimensional eigenspaces.
Observation:

• Along the line f1 = kf3, the system has same eigenvectors.

• This field is a good example for a system that should rotate 4π to return
to initial, see Fig5; the blue round is rotating 2π, turning the vector to
its inverse; the red round is the second round of rotating 2π, turning the
vector to its initial.

• This leads to an interesting phenomenon: eigenvectors swapping. Since
rotating π along the loop corresponding to rotating π/2 of eigenvectors and
the angle between ϕ± is π/2, we have the swapping of ϕ+ and ϕ− when we
“passing through” the origin. See Fig6. Here, the “swap” means the first
eigenvector becomes the second eigenvector and the second eigenvector
becomes the first eigenvector.
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Figure 4: Eigenvector field

Figure 5: Field of “rotating 4π to initial”
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ϕ+ change to ϕ−

ϕ− change to ϕ+

Figure 6: Swap eigenvectors

The eigenvalues do not matter; the order of corresponding eigenvectors mat-
ters. So we focus on the ordered pair (ϕ−, ϕ+)

Hence, the moduli space is M2 := {(f3, f1) ∈ R2}/ ∼, where the relation ∼
is

(f3, f1) ∼ (f ′3, f
′
1) ⇐⇒ H2(f3, f1) and H2(f

′
3, f

′
1) have same ordered pair (ϕ−, ϕ+)

.
Now the question is to study the topology of M2.

Property 4.7. M2 ≃ S1.

Proof. From observation we have (ϕ−, ϕ+) coincides on the line, hence we only
need to consider H2 on the unit sphere S1 in R2. The following will shows on
each point in S1 we have different (ϕ−, ϕ+).

On S1, let f3 = cosθ, f1 = sinθ. The eigenvalues and normalized eigenvec-
tors corresponding to θ are as follows:

ω− = −1, ω+ = 1

ϕ− =

[
− sin (θ/2)
cos (θ/2)

]
, ϕ+ =

[
cos (θ/2)
sin (θ/2)

]
Claim: {H2 (f3, f1) | (f3, f1) ∈ S1} 1:1−−→ (f3, f1) ∈M2 There are two ways to

show it.
(1)Considering H2(ϕ−):
H2 can be represented by ϕ−:

H2 =

[
f3 f1
f1 −f3

]
=

[
cos θ sin θ
sin θ − cos θ

]
= 1− 2ϕ−ϕ−

T
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a
b

c

Figure 7: Represent element in S1

ϕ− ∈ SO (2)
2:1−−→ H2(ϕ−) = 1− 2ϕ−ϕ−

T

, since H2(ϕ−) = H2(−ϕ−). Hence, M2 = SO(2)/Z2 = S1/Z2 = S1

(2)Considering θ:

eiθ ∈ S1 1:1−−→
[
cos θ − sin θ
sin θ cos θ

]
∈ SO (2)

1:1−−→ θ ∈ [0, 2π)
1:1−−→ H2(θ) =

[
cos θ sin θ
sin θ − cos θ

]

Here is a geometric view: Each point in S1 repesents an equivalence class in
M2. For example, e.g., a (resp. b,c) represents points (f3, f1) on the red (resp.
yellow, blue) line(See Fig7).

Conclusion 4.8. π1(M2) = π1(S
1) = Z.

4.3 Classifying III:π1(SO(2)/O(1))

• A two band Hamiltonian is H2 =
∑2

j=1 j
∣∣∣ujk〉〈ujk∣∣∣, where ∣∣∣ujk〉 are eigen-

vectors by spectrum theorem.

• H2 can be determined by a set of “right hand” orthonormal vectors
∣∣∣ujk〉

and unchanged for two of eigenvectors flip:
∣∣∣ujk〉 7→ − ∣∣∣ujk〉.

Remark 4.9. Note that H2 remains unchanged for two eigenvectors flip, NOT
one of them. This is because we require all eigenvectors to form a right-hand
frame (Any odd number flip will change the determinant from 1 to −1). □
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Therefore H2 can be describe by SO(2)/O(1) = S1/Z/2 = RP2. Then
π1(SO(2)/O(1)) = Z/2 characterize all nontrivial loops in this parametrized
system.

The visualizing of π1(SO(2)/O(1)) = Z/2 is as following: SO(2)/O(1) is
S1 identifying antipodal points. The generator of π1(SO(2)/O(1)) = Z/2 is
depicted in Fig8.

ϕ+

ϕ+

ϕ−

ϕ−

Figure 8: Generator of π1(SO(2)/O(1))

Along this loop, the eigenvectors evolves to their inverse.

4.4 Comparison of 3 classifying methods

Topological invariants obtained by classification I, II, and III have different
meanings:

• Classification I: Two eigenvectors are orthogonal, so we only consider
one eigenspace. We identify an normalized eigenvector with its inverse,
since we use the language of bundle and the fiber of the bundle is an
eigenspace.

• Classification II: We distinguish an eigenvector with its inverse.

• Classification III: Two eigenvectrs form a right-hand frame, so we can
only consider one eigenvector. Quotient O(1) means we identify an nor-
malized eigenvector with its inverse.

We can choose different topological invariants in different cases by physical
meaning.
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5 3-band Hermitian Hamiltonian over R
• A three band Hamiltonian is Hk =

∑3
j=1 j

∣∣∣ujk〉〈ujk∣∣∣.
• Hk can be determined by a set of “right hand” orthonormal vectors

∣∣∣ujk〉
and unchanged for two of eigenvectors flip:

∣∣∣ujk〉 7→ − ∣∣∣ujk〉.
Remark 5.1. Hk remains unchanged for two of the eigenvectors flip, not
one or three of them, because we need all eigenvectors to form a right-hand
frame (Any odd number flips will change the determinant from 1 to −1).

• Hk can be describe by SO(3)/D2.

• It’s some kind of eigenbundle of Hk, see Fig9.

SO(3)

SO(3)/D2

D2 fiber (different eigenvectors determine same
Hamiltonians) a

b
c

,

 −a
−b
c

,

 −a
b
−c

, a
−b
−c



Hamiltonian

 a
b
c



Figure 9: Eigenbundle

5.1 Classifying I: Universal bundles of D2 → SO(3) →
SO(3)/D2

Consider the bundle

D2 ↪→ SO(3)
π−→ SO(3)/D2 =: X, π(x) = x̄

Goal: The isomorphism classes of principal D2-bundles over X are denoted
by PrinD2(X) and PrinD2(X) ≃ [X,BD2] where BD2 is the classifying space
of D2. The following will show which ϕ ∈ [X,BD2] corresponds to the principal
D2-bundle we considered.

Compute classifying bundle

• The classifying bundle of O(1) is f : EO(1) = V1(R∞) → Gr1(R∞),
f(v) = span(v)

15



• Then we can compute the classifying bundle ofD2 ≃ Z2×Z2 = O(1)×O(1)
is f × f : V1(R∞)× V1(R∞)→ Gr1(R∞)×Gr1(R∞)

Remark 5.2. V1(R∞) is the Stiefel manifold. Vk(Rn) is the set of all orthonor-
mal k-frames in Rn i.e., the set of ordered orthonormal k-tuples of vectors in
Rn.

We need to find ϕ : X → Gr1(R∞) × Gr1(R∞), such that π : SO(3) → X
appears in the pullback of ϕ and f × f :

SO(3) V1(R∞)× V1(R∞) = ED2

X Gr1(R∞)×Gr1(R∞) = BD2

π f×f

ϕ

Orbital of

ab
c

 ∈ SO(3)

where f : V1(R∞)→ Gr1(R∞) is defined by f(v1) = span(v1).

SO (3) = {M ∈ M3×3 (R) |MTM = I, detM = 1}

D2 =

I,
−1 −1

1

 ,
−1 1

−1

 ,
1 −1

−1

 ⊂ SO (3)

∀

 a
b
c

 ∈ SO (3) (a, b, c ∈M1×3) , the orbital of

 a
b
c

 is

 a
b
c

 ,
 a
−b
−c

 ,
 −ab
−c

 ,
 −a−b

c


Construct ϕ
Claim: ϕ : SO(3)/D2 → Gr1(R∞)×Gr1(R∞) is

ϕ


 a
b
c


 = (span

([
a 0 0 · · ·

])
, span

([
b 0 0 · · ·

])
The pullback of ϕ and f × f is constructed as

S = X×BD2
ED2 = {


 a
b
c

, (v1, v2)
 |
 a
b
c

 ∈ X, (v1, v2) ∈ V1 (R∞)×V1 (R∞) ,

span
([
a 0 0 · · ·

])
= span (v1) , span

([
b 0 0 · · ·

]
= span (v2)

)
}

Since v1, v2 are orthonormal, we have v1 = [±a, 0, 0, · · · ], v2 = [±b, 0, 0, · · · ].
It’s easy to show S ≃ SO(3)
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
 a
b
c

, (a, b)
 7→

 a
b
c

 ,

 a
b
c

, (−a, b)
 7→

 −ab
−c

 ,

 a
b
c

, (a,−b)
 7→

 a
−b
−c

 ,

 a
b
c

, (−a,−b)
 7→

 −a−b
c


5.2 Classifying II: A ball equipped information like a bun-

dle

In [18], it is established that π1(SO(3)/D2) ≃ Q. In this section, we aim to
provide a visualization of SO(3)/D2 and π1(SO(3)/D2) to offer an intuitive
understanding of how eigenframes rotate.

Definition 5.3. The space of Hamiltonians is defined as: H = {H = uT1 u1 +
2uT2 u2 + 3uT3 u3|[u1, u2, u3] ∈ SO(3)/D2}

Remark 5.4. For any [u1, u2, u3] ∈ SO(3), the following four configurations
result in the same Hamiltonian H in H, which explains why we quotient by D2:

[u1, u2, u3] ∼ [−u1,−u2, u3] ∼ [−u1, u2,−u3] ∼ [u1,−u2,−u3]

5.2.1 Visualizasion of SO(3)/D2

Recall that SO(3) = M ∈ GL(3,R) |MTM = I, detM = 1, representing rota-
tions that preserve orientation. Another way to describe SO(3) is by using
rotation parameters-any rotation can be described by a pair (r̂, θ) which means
rotate along r̂ by θ.

Definition 5.5. Let ϕ(r̂, θ) represent a rotation around the axis r̂ ∈ S2 by an
angle θ ∈ [0, 2π]. Thus, we can describe SO(3) as:

SO(3) = {ϕ(r̂, θ)|r̂ ∈ S2, θ ∈ [0, 2π]}

Next, we aim to reduce the parametrization of SO(3) and visualize it.

Fact 5.6. Two key properties are important to note:
(1)ϕ(r̂, θ) = ϕ(−r̂, 2π − θ)
(2)Specifically, ϕ(r̂, π) = ϕ(−r̂, π)

The first fact implies that we can always restrict the parameter θ to the
interval [0, π]. For example, ϕ(x̂, 3π/2) = ϕ(x̂, 2π − 3π/2) = ϕ(x̂, π/2).

This leads us to view SO(3) as a solid ball with radius π. Any point t⃗ in the
ball represents the rotation ϕ(⃗t/|⃗t|, |⃗t|). For instance, the bold point in Fig. 10
corresponds to ϕ(ŷ, π/2), representing a rotation by π/2 along the ŷ axis.

The second fact suggests that the antipodal points on the boundary of the
ball should be identified (Fig. 11).
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π/2

π

Figure 10: Parametrization of SO(3)

ϕ(ŷ,−π) ϕ(ŷ, π)

Figure 11: Antipodal points are the same in SO(3)

Conclusion 5.7. Therefore, SO(3) can be described as a ball of radius π with
antipodal points on the boundary identified. In other words, SO(3) ≃ B3(π)/ ∼,
where x ∼ y if x, y ∈ ∂B3(π) and x = −y.

Next, we turn our attention to visualizing SO(3)/D2.

Fact 5.8. The dihedral group D2 consists of the following elements: D2 =
{ϕ(x̂, π), ϕ(ŷ, π), ϕ(ẑ, π), id}. These elements can be represented by the four
points shown in Fig. 12.

ϕ(ŷ, π)

ϕ(x̂, π)

ϕ(ẑ, π)

id

Figure 12: D2 in SO(3)

Conclusion 5.9. SO(3)/D2 is a ball of radius π, with two operations applied:
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(1)glue antipodal points
(2)glue four points in Fig12 to a point

Visualize the fundamental group of SO(3)/D2

Fact 5.10. The fundamental group of SO(3)/D2 is isomorphic to the quater-
nion group Q, i.e., π1(SO(3)/D2) ≃ Q = ±1,±i,±j,±k.

Property 5.11. There is a bijection between the following spaces:
SO(3)/D2 ↔ space of Hamiltonians↔ space of eigenframes
where space of Hamiltonians is defined as in Definition 5.4.

Proof. The bijection is established as follows: SO(3)/D2 ↔ {space of Hamiltonians} ↔
{spaces of eigenframes}

ϕ(r̂, θ) 7→ H = uT1 u1 + 2uT2 u2 + 3uT3 u3 7→ [u1, u2, u3]
where [u1, u2, u3] = ϕ(r̂, θ)[e1, e2, e3] and [e1, e2, e3] is the standard frame in

R3.

Bu this property, we have following conclusion:

Conclusion 5.12. Any loop in SO(3)/D2 represents the evolution of an eigen-
frame. Consequently, any element in π1(SO(3)/D2) can be interpreted as the
evolution of an eigenframe.

Here’s the rephrased version of your text:

Example 5.13. Consider loops L1, L5, and L6 in Fig. 13, where x̂, ŷ, and ẑ
correspond to the first, second, and third eigenvectors, respectively.

Evolution of eigenframe on loop L1: The first eigenvector (x̂) remains fixed,
while the second (ŷ) and third (ẑ) eigenvectors rotate by π.

Evolution of eigenframe on loop L6: The second eigenvector (ŷ) stays fixed,
with the first (x̂) and third (ẑ) eigenvectors rotating by π.

Evolution of eigenframe on loop L5: The third eigenvector (ẑ) is fixed, and
the first (x̂) and second (ŷ) eigenvectors rotate by π.

The following example details the computation further.

Example 5.14. Evolution on Loop L1. Parametrization shown in Fig14.
Referring to [4], the rotation matrix for a rotation by angle ψ around the

axis [a1, a2, a3] is given by: cosψ + (1− cosψ) a1
2 (1− cosψ) a1a2 − sinψa3 (1− cosψ) a1a3 + sinψa2

(1− cosψ) a1a2 + sinψa3 cosψ + (1− cosψ) a2
2 (1− cosψ) a2a3 − sinψa1

(1− cosψ) a1a3 − sinψa2 (1− cosψ) a2a3 + sinψa1 cosψ + (1− cosψ) a3
2


In this case, a1 = 0, a2 = cos θ, a3 = sin θ, and ψ = π. Therefore, the

rotation matrix (i.e., the eigenframes) becomes:
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o

c′

c

a

a′

bb′

L1

L2L3

L4

L5

L6
L7

L8

L9

x
y

z

x
y

z

x

y

z

x

y

z

x

y

z

a, a′ :

b, b′ :

c, c′ :

d :

de

e :

Figure 13: loops in SO(3)/D2

ϕ((0, cosθ, sinθ), π)

L1

θ

Figure 14: loop L1
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−1 0 0
0 cos 2θ sin 2θ
0 sin 2θ − cos 2θ


which is parametrized by θ. Hence, the evolution of the eigenframe on loop L1

involves the first eigenvector (x̂) remaining fixed, while the second (ŷ) and third
(ẑ) eigenvectors rotate by π.

The eight points in Fig. 15 represent a single point, and since loops must
start and end at the same point, we only need to consider the loops shown in
Fig. 15.

Conclusion 5.15. All non-trivial loops can be represented by the loops (yellow
lines) in Fig. 15. (Arrows are omitted for simplicity.)

Figure 15: “Base loops” in SO(3)/D2

To explain π1(SO(3)/D2), the following properties are clear:

• L1 = L4. Indeed, in L1, ŷ and ẑ rotate clockwise, while in L−1
4 , ŷ and ẑ

rotate counterclockwise. Hence, L1 = (L−1
4 )−1 = L4

Corollary 5.16. L1 = L2 = L3 = L4

Proof. By step(2) of Conclusion 5.10, we have L3 = L1 and L2 = L4.
With L1 = L4, we have L1 = L2 = L3 = L4.

Corollary 5.17. The order |L1| = 4

Proof. L4
1 = L1L2L3L4 =trivial loop and obviously L2

1, L
3
1 ̸= trivial loop.

Corollary 5.18. L2
1 = −1

Proof. L4
1 = 1 so L2

1 = −1
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• Similarly, L7 = L8, and |L7| = 4. Thus, we only need to focus on the
1/8 ball. Since it’s known that π1(SO(3)/D2) ≃ Q, the visualization of
π1(SO(3)/D2) is shown in Fig. 16.

i

i
j

j

k

k

Figure 16: π1(SO(3)/D2)

Remark 5.19. Note that I have selected specific elements to illustrate
properties. For instance, if we prove that L1 = L2, we also have L5 = L9

in Fig. 13.

Reasonable Guess: When two eigenvectors rotate by π, a degeneracy
occurs between these two bands. Furthermore, orientations should be
taken into account. For example, on L1 (or L2), the eigenvectors ŷ and
ẑ rotate by π, so L1 (or L2), being a loop of charge i, encloses a degen-
eracy between the second and third bands with positive orientation. In
contrast, L−1

1 encloses a degeneracy between the second and third bands
with negative orientation.

Remark 5.20. For the loop −1, although the eigenframe evolution ends
at its initial state, this is not a trivial loop. It is similar to a spin in physics,
which must rotate by 4π to return to its initial state. A 2π rotation results
in −1 ̸= 1.

Relationship between [1,Fig.3A to C] “Two NLs of the same orienta-
tion between the same pair of bands are described by −1” [18]. With this
guess, the loop L1L2 encloses two degeneracies with the same orientation
formed by the second and third bands. Therefore, L1L2 has a charge of
−1. A similar analysis shows that L7L8 encloses two degeneracies with
the same orientation formed by the first and second bands. The transfor-
mation in [1, Fig. 3A to C] represents the deformation from L7L8 to L1L2

on our ball, i.e., from k2 = −1 to i2 = −1 (see Fig. 14(b)).

Further discussion
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This visualization is valuable because the SO(3)/D2 ball captures the rota-
tional behaviors of frames within a loop, functioning similarly to a bundle. It
presents a compelling image.

In the non-Hermitian case, if we could identify a group whose loop encom-
passes both the evolution of Hermitian and the evolution of eigenframes, we
could apply the same approach. However, finding such a group appears to be
quite challenging.

6 2-band real pseudo-Hermitian

In this section, we give a different way to recover results in [12], and this method
can generalize to the discussion for 3-band real pseudo-Hermitian.

Definition 6.1. Let η = diag[−1, 1]. A 2-band real pseudo-Hermitian Hamil-
tonian is a 2× 2 real matrix H satisfying ηHη = H†. □

Computation 6.2. LetH =

[
a b
c d

]
. ηHη = H† leads to

[
a −b
−c d

]
=

[
a c
b d

]
.

□

Conclusion 6.3. Any 2-band real pseudo-Hermitian H has the form

H =

[
a b
−b c

]
, a, b, c ∈ R

□

Next, we want to compute the eigenvalues and eigenvectors.

Computation 6.4. The parametrized eigenpolynomial is λ2−(a+c)λ+ac+b2 =
0.

The eigenvalues are λ± =
a+c±

√
(a−c−2b)(a−c+2b)

2
For b ̸= 0, the eigenvector v± to λ± is

v± =

[
c−λ±

b
1

]
=

[
c−a∓

√
(a−c−2b)(a−c+2b)

2b
1

]
For b = 0, λ+ = max{a, c}, λ− = min{a, c}. And we have

• a > c

v+ =

[
x
0

]
, x ∈ R, v− =

[
0
y

]
, y ∈ R

• c > a

v+ =

[
0
x

]
, x ∈ R, v− =

[
y
0

]
, y ∈ R

• a = c, eigenspace to the eigenvector has dimension 2.
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□

From the computation, we have

Conclusion 6.5. The degeneracy surfaces (surface at which has only one eigen-
value) are a− c− 2b = 0, and a− c+2b = 0. These two planes intersect at line
l = {(x, 0, x)|x ∈ R} □

We want to compute the configuration of the eigenvectors. Let’s consider
the eigenvector v+ firstly. The main idea is to find points that have same v+.

Computation 6.6. Compute how parameter c affects eigenvectors.
Let c = s where s ∈ R is fixed. Then, we find that

• b ̸= 0

v+ (a+ s, b, s) =

[
s−(a+s)∓

√
(a+s−s−2b)(a+s−s+2b)

2b
1

]

=

[
−a∓
√

(a−2b)(a+2b)

2b
1

]
= v+(a, b, 0)

• For b = 0, a + s > c = s, this leads to a > 0. Hence, v+(a + s, 0, s) =
v+(a, 0, 0).

• For b = 0, s = c > a + s, this leads to 0 > a. Hence, v+(a + s, 0, s) =
v+(a, 0, 0).

□

Conclusion 6.7. (i)We have v+(a+ s, b, s) = v+(a, b, 0), that means, the con-
figuration of v+ has symmetry of translation c = s plane along the singular line
l = {(x, 0, x)|x ∈ R}

(ii) By symmetry of translation, we reduce the case to c = 0 plane.

Computation 6.8. Compute the configuration on the line a = kb for a
fixed k ∈ R

By above conclusion, we only consider c = 0.

• b > 0

v+ =

[
−a−

√
a2−4b2

2b
1

]
=

[
−k

2 −
√

k2

4 − 1

1

]

• b < 0

v+ =

[
−a−

√
a2−4b2

2b
1

]
=

[
−k

2 +
√

k2

4 − 1

1

]

• b = 0, a > 0

v+ =

[
x
0

]
, x ∈ R
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a

b

c

l = {(x, 0, x)|x ∈ R}

c = 0

c = s

s

Figure 17: Symmetry of translation

• b = 0, 0 > a

v+ =

[
0
x

]
, x ∈ R

Computation 6.9. Compute limit at a-axis

• b > 0,

lim
k→+∞

− k

2
−
√
k2

4
− 1 = lim

k→+∞
−

(
k

2
+

√
k2

4
− 1

)
= −∞

• b > 0,

lim
k→−∞

−k
2
−
√
k2

4
− 1 = lim

k→−∞

(
−k

2 −
√

k2

4 − 1

)(
−k

2 +
√

k2

4 − 1

)
−k

2 +
√

k2

4 − 1
= lim

k→−∞

1

−k
2 +

√
k2

4 − 1
= 0+

• b < 0,

lim
k→+∞

−k
2
+

√
k2

4
− 1 = lim

k→+∞

(
−k

2 +
√

k2

4 − 1

)(
k
2 +

√
k2

4 − 1

)
k
2 +

√
k2

4 − 1
= lim

k→+∞

−1
k
2 +

√
k2

4 − 1
= 0−

• b < 0,

lim
k→−∞

− k

2
+

√
k2

4
− 1 = +∞

By computation of the limit at a-axis, we have conclusions:
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b

a

k = 2k = −2

(
−k/2−

√
k2/4− 1

1

)

(
−k/2 +

√
k2/4− 1

1

)

(
x

0

)

(
0

x

)

Figure 18: Configuration

b

a

(
−k/2−

√
k2/4− 1

1

)

(
−k/2 +

√
k2/4− 1

1

)

(
x

0

)

(
0

x

)

(
+∞
1

) (
−∞
1

)

(
0−

1

) (
0+

1

)

Figure 19: limit at a-axis
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Conclusion 6.10. The eigenvector v+ varies continuously on R2−{(a, 0, 0)|a >
0}. Configuration near a-axis (first component is real) can be seen in Fig19 and
configuration at the region where the first component is complex can be seen in
Fig20.

b

a

(
eiθ

1

)(
eiθ

1

)
θ : 0→ π

θ : π → 2π

(
1

1

)

(
1

1

)

(
−1
1

)

(
−1
1

)

Figure 20: Complex region rotation

Conclusion 6.11. The configuration of eigenvectors is S1 identifies A1 ∼ A2,
B1 ∼ B2 in Fig??, which is the space S1 ∨ S1 ∨ S1.

So π1(S
1 ∨S1 ∨S1) = Z ∗Z ∗Z classifies the singularity, coincides the result

in [12].

7 Reducing number of parameters in 3-band real
pseudo-Hermitian

In this section we reduce parameter space R6 of 3-band real psuedo Hermitian
matrix to R4 by symmetry of eigenpolynomials.

Definition 7.1. Let η = diag[−1, 1, 1]. The 3-band real psuedo Hermitian H
is a 3× 3 matrix H satisfying ηHη = H†.

□

Computation 7.2. η

a b c
d e f
g h l

 η =

 a −b −c
−d e f
−g h l

 =

a d g
b e h
c f l


□
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S1

A1

A2

B2

B1

Figure 21: S1 identifies A1 ∼ A2, B1 ∼ B2

Conclusion 7.3. The 3-band real psuedo Hermitian H is of the form a b c
−b d e
−c e f

 a, b, c, d, e, f ∈ R

□

Computation 7.4. Translation symmetry
The eigen function of H is

(a− λ)(d− λ)(f − λ) + b2(f − λ) + c2(d− λ)− e2(a− λ)− 2bce = 0 (1)

The eigenvector is the solution toa− λ b c
−b d− λ e
−c e f − λ

 x1
x2
x3

 =

 0
0
0


Consider the transformation (a, b, c, d, e, f) → (a′ = a + s, b, c, d′ = d +

s, e, f ′ = f + s).
Then the eigen function becaomes
(a+s−λ′)(d+s−λ′)(f +s−λ′)+ b2(f +s−λ′)+ c2(d+s−λ′)−e2(a+s−

λ′)−2bce = (a−(λ′−s))(d−(λ′−s))(f−(λ′−s))+b2(f−(λ′−s))+c2(d−(λ′−
s))−e2(a−(λ′−s))−2bce = 0 (2)

Comparison with (1) and (2), we have λ′ − s = λ.
Therefore, the equationa+ s− λ′ b c

−b d+ s− λ′ e
−c e f + s− λ′

 x1
x2
x3

 =

 0
0
0


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is equal to the equationa− λ b c
−b d− λ e
−c e f − λ

 x1
x2
x3

 =

 0
0
0


That means, translation preserves eigenspace.

Computation 7.5. Strech symmetry
Consider the transformation (a, b, c, d, e, f) → (ka, kb, kc, kd, ke, kf) when

k ̸= 0.
The eigen function becomes

(ka−λ′)(kd−λ′)(kf−λ′)+k2b2(kf−λ′)+k2c2(kd−λ′)−k2e2(ka−λ′)−2k3bce = 0

Devide it by k3, we obtain

(a−λ′/k)(d−λ′/k)(f−λ′/k)+b2(f−λ′/k)+c2(d−λ′/k)−e2(a−λ′/k)−2bce = 0

Comparison with (1), we have λ′/k = λ.
Therefore, ka− λ′ kb kc

−kb kd− λ′ ke
−kc ke kf − λ′

 x1
x2
x3

 =

 0
0
0


has same solution asa− λ b c

−b d− λ e
−c e f − λ

 x1
x2
x3

 =

 0
0
0


by primary row transformation.
Hence, strech transformation preserves eigenspace.

Conclusion 7.6. (i) vi(a+ s, b, c, d+ s, e, f + s) = vi(a, b, c, d, e, f), i = 1, 2, 3
(ii) vi(ka, kb, kc, kd, ke, kf) = vi(a, b, c, d, e, f), k ̸= 0, i = 1, 2, 3

By above conclution, we can always set one of a, d, f to 0 and one of other
elements to 1. This reduce parameters from R6 to R4, which is helpful for
further works.

8 Intersection homology of the base space

The previous section do not intersect the singular points in the base space of
the bundle (parameter space). In this section, we study the topology of the base
space by intersection homology.
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8.1 Intersection homology

In recent years, intersection homology has become an indispensable tool for
studying the topology of singular spaces. While the main results of usual ho-
mology theories often fail for singular spaces, intersection homology effectively
recovers these properties, bridging this critical gap. Appropriate reference for
intersection homology/homotopy are [5],[3]

Definition 8.1. A filtration is a sequence of closed subsets of X:
Xn ⊇ Xn−1 ⊇ · · · ⊇ X2 ⊇ X1 ⊇ X0 ⊇ X−1

The connected component of Xi −Xi−1 is called stratum.

• In application, Xi is always i-dimension singularities of X

• A stratum in Xi−Xi−1 can be view as i-dimension spaces without lower
dimensional singularities.

Let X be a filtered simplicial complex. We say i-simplex σ in general position
of stratum S if dim(σ ∩ S) ⩽ dim(σ) + dim(S)− n for every stratum S of X

It is always possible for us to move an i-simplex to be in a general position
with stratum S in manifolds. However, this is not true in singular spaces.

Definition 8.2. Let X be filtered space of formal dimension n. Let F be the
set of strata of X. A perversity on X is a function p̄ : F → Z such that p̄(S) = 0
if S ⊂ Xn −Xn−1

Definition 8.3. i-simplex σ is called p̄-allowable if dim(σ ∩ S) ⩽ dim(σ) +
dim(S)− n+ p̄(S) for every stratum S of X

We tolerate to what extent the strangeness of the i-simplex; if it is too
strange, we do not acknowledge it as an allowed i-chain, but if it is not too
strange, we accept it as an allowable i-simplex.

Definition 8.4. Let X be a filtered simplicial simplex with filtration Xn ⊃
Xn−2 ⊃ · · · ⊃ X0.

An i-chain ζ is called p̄-allowable if every simplex in ζ and ∂ζ is p̄-allowable.
Define the group IpCi(X) be the subset of Ci(X) consisting of p̄-allowable

i-chains.

It can be shown that the chain complex (C∗(X), ∂) restricts to a chain com-
plex (IpC∗(X), ∂).

Definition 8.5. The intersection homology groups are defined by IpHi(X) =
Hi(IpC·(X))

For a topological space, we need PL intersection homology which is inde-
pendent of triangulation. Let’s define PL homology first.

Definition 8.6. The simplicial complex K ′ is a subdivision of K if:

• |K| = |K ′|
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• Every simplex of K ′ is contained in some simplex of K

Definition 8.7. A triangulation T of a topological space X is a pair T = (K,h)
where

• K is a locally finite simplicial complex

• h : |K| → X is a homeomorphism

Remark 8.8. Locally finite means: For all x ∈ |K|, there exists a neighborhood
U such that U intersects only finitely many simplices.

Definition 8.9. Let T = (K,h) and S = (L, j) be two triangulations. We say
T is equivalent to S if and only if j−1h is a simplicial isomorphism.

Definition 8.10. A subdivision of T = (K,h) is a pair T ′ = (K ′, h), where K ′

is a subdivision of K.

Definition 8.11. A PL (piecewise linear) space is a topological space X with

T = {locally finite triangulations}

such that:

• For every T ∈ T, every subdivision of T is also in T.

• For every T, S ∈ T, T and S have a common refinement.

Remark 8.12. Let T = (K,h) and S = (L, j). T , S have a common refinement
means: there exists a subdivision T ′ = (K ′, k) of T and a subdivision S′ = (L′, ℓ)
of S such that the induced map f : K ′ → L′ is a simplicial isomorphism.

Construction 8.13. We define a relation ⩽ on T as following: Let T =
(K,h), S = (L, l) ∈ T

Define T ≤ S ⇐⇒ S equivalent to a subdivision of T .

Fact 8.14. (T,≤) is a directed set (i.e., the relationship ⩽ satisfying (1) tran-
sitive (2) reflexive (3) for any T , S ∈ T, ∃W ∈ T such that T ⩽W and S ⩽W )

Definition 8.15. Let (X,T) be a PL space. For T = (K, k) ∈ T, define
CT

∗ (X) = C∗(|K|).

Definition 8.16. Let T = (K, k) ⩽ T ′ = (K ′, k′) in T, we want to define a
map CT

∗ (X)→ CT ′

∗ (X), called subdivision chain map as following:

CT
∗ (X) = C∗(|K|) −→ C∗(|K ′|) = CT ′

∗ (X), σ 7→
∑

τσ⊆|σ|

τσ

For ξ =
∑

i aiσi, the map is

ξ 7→
∑
i

ai
∑

τσi
⊆|σi|

τσi
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|K| |K ′|

σ

σ1

σ2

a a1 a2

Figure 22: An example for subdivision chain map

Example 8.17.
σ 7→ σ1 + σ2

σ + 2a 7→ σ1 + σ2 + 2(a1 + a2)

It’s easy to check that with above data, we can define a direct limit as
following:

Definition 8.18. CT
∗ (X) := lim−→

T∈T

CT
∗ (X), where CT

∗ (X) = C∗(|K|) for T =

(K, k)

Actually, we do not need all triangulations in T. We only need a subset of
T containing all subdivisions of a fixed triangulation T0.

Property 8.19. Let X be a PL space with admissible triangulation T. Let
T0 = (K, k) ∈ T and let T0 be the subset of T consisting of subdivision of T0.
Then CT

∗ (X) = lim−→
T∈T

CT
∗ (X) ∼= lim−→

T∈T0

CT
∗ (X).

Definition 8.20. X is a PL space. Define PL homology of PL space (X,T) as
H∗(X) := H∗(C

T
• (X))

Property 8.21. Let X be a PL space. Then H∗(X) ∼= H∗(X), where H∗(X)
can be singular or simplicial homology with respect to any triangulations.

Remark 8.22. PL intersection homology (defined later) may not isomorphic toH∗(X)
in general!

Next, we can define PL intersection homology.

Definition 8.23. Let X be a PL filtered space such that every skeleton Xi is
a subcomplex of any admissible triangulation.

Define I p̄CT
∗ (X) := lim−→

T∈T

I p̄CT
∗ (X), where I p̄CT

∗ (X) := I p̄C∗(|K|).

Remark 8.24. Filtration and perversity of X can “move to” |K| by homeomorphism k.
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Fact 8.25. If T ≤ T ′, the subdivision chain map ν̄ : CT
∗ (X)→ CT ′

∗ (X) restricts to a map ν :
I p̄CT

∗ (X)→ I p̄CT ′

∗ (X)

Definition 8.26. We define the PL intersection homology of PL space (X,T)
as I p̄H∗(X) := H∗(I

p̄CT
• (X)) ∼= lim−→

T∈T0

H∗(I
p̄CT

• (X)) = lim−→
T∈T0

I p̄HT
∗ (X), where

I p̄HT
∗ (X) = I p̄H∗(|K|) for T = (K, k).

Definition 8.27. Let L be a subcomplex of K. L is called a full subcomplex if

∀σ ∈ K with vertices in L, then σ ∈ L

Definition 8.28. An admisissible triangulation T of PL filtered space X with
filtration {Xi} is called full triangulation if all Xi is a full subcomplex of X.

Theorem 8.29. Let X be a PL filtered space, T a full triangulation of X, and
T ′ any subdivision of T . Then

I p̄CT
∗ (X) −→ I p̄CT ′

∗ (X)

is an isomorphism.

Corollary 8.30.

I p̄H∗(X) = lim−→
T ′∈T0

H∗(I
p̄CT ′

• (X)) = H∗

(
lim−→

T ′∈T0

I p̄CT
• (X)

)
= H∗(I

p̄CT
• (X)) = I p̄HT

∗ (X).

8.2 Computate R2 with two degeneracy lines

In this section, we compute the example in Fig 23. It is R2 with two degeneracy
lines L1 and L2.

We have filtration X2 ⊇ X1 ⊇ X0 ⊇ X−1 where X2 = R2, X1 = L1 ∪ L2,
X0 = L1 ∩ L2.

The strata are shown in Fig24
We only need to choose a full triangulation to compute PL intersection

homology. We pick triangulation in Fig25.
The methodology to compute is classifying i-simplexes into several types,

see Fig26
We assume perversity are same on O1, O2, O3, O4:

p̄ : {Strata of X} → Z

Ri 7→ 0, i = 1, 2, 3, 4

Oi 7→ p̄(1), i = 1, 2, 3, 4

T 7→ p̄(2)

Remark 8.31. The assumption p̄(O1) = p̄(O2) = p̄(O3) = p̄(O4) for simplicity.
We shall throw this assumption after we compute this simple case.
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R2
L1

L2

Figure 23: R2 with two degeneracy lines L1 and L2

R2

L1

L2

Figure 24: Stratums:There are four strata in X2 −X1, depicted in blue; There
are four strata in X1−X0, depicted in red, pink, yellow and green; There is one
stratum in X0, depicted in purple
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L1L2 · · ·

· · ·

· · ·

· · ·

· · ·

···
Figure 25: A full triangulation

0-simplex: type I0 Intersects with X0

type II0 Intersects with X1 −X0

1-simplex: type I1 Only intersects with X1 −X0 of dim 1

type II1 Only intersects with X1 −X0 of dim 0

typeIII1 Intersects with X1 −X0, X0

typeIV1 Only intersects with X0

2-simplex:
type I2 Intersects with X1 −X0, X0

type II2 Only intersects with X1 −X0 of dim 1

type III2 Only intersects with X1 −X0 of dim 0

type IV2 Only intersects with X0

Figure 26: Types of simplexes: we ignore the intersection with X2−X1 since we
can always ignore the allowability condition on regular strata. The sub-index of
a type denotes the dimension of the simplex, and the corresponding examples
are depicted in the same color in Fig25
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The following steps compute the allowability condition for simplexes of di-
mension 0, 1, 2.

• Let η be any 2-simplex. It is allowable if

– dim(η ∩X0) ⩽ 2− 2 + p̄(2) = p̄(2)

– dim(η ∩ (X1 −X0)) ⩽ 2− 1 + p̄(1) = p̄(1) + 1

• Let e be any 1-simplex. It is allowable if

– dim(e ∩X0) ⩽ 1− 2 + p̄(2) = p̄(2)− 1

– dim(e ∩ (X1 −X0)) ⩽ 1− 1 + p̄(1) = p̄(1)

• Let v be any 0-simplex. It is allowable if

– dim(v ∩X0) ⩽ −2 + p̄(2)

– dim(v ∩ (X1 −X0) ⩽ −1 + p̄(1))

These allowability conditions suggest that we need to discuss the problem
in 16 cases based on the value ranges of p̄(1) and p̄(2). In each of the 16 cases,
we have labeled the allowable simplices for that case; see Fig27.

p(1)

p(2)

I0
IV1

IV2

I0
IV1

III2, IV2

I0
II1, IV1

I2, II2, III2, IV2

I0, II0
I1, II1, III1, IV1

I2, II2, III2, IV2

IV1

IV2

IV2

None
III2

III2, IV2

IV1

III2, IV2

II1, IV1

I2, II2, III2, IV2

II1
I2, II2, III2, IV2

II1
II2, III2

II0
I1, II1, III1, IV1

I2, II2, III2, IV2

II0
I1, II1
I2, II2, III2, IV2

II0
I1, II1
II2, III2

1−1

1

2

0

Figure 27: The allowable simplex type in each case. Note that all cases contain
points on the line. e.g., the bottom right box is p̄(2) < 0, p̄(1) ⩾ 1.

Remark 8.32. Fig27 is obtained by combining three figures in Fig28.
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I0 I0, II0

II0

p(2) = 2

p(1) = 1

(a) Analysis for 0-simplex

IV1 II1, IV1

I1, II1

p(2) = 1

p(1) = 1

I1, II1, III1, IV1

p(1) = 0

II1

(b) Analysis for 1-simplex

IV2 III2, IV2

II2, III2

p(2) = 0

p(1) = 0

I2, II2, III2, IV2

p(1) = −1

III2

(c) Analysis for 2-simplex

Figure 28: Allowable simplexes

Example 8.33. Consider the case 1 ⩾ p̄(2) < 2, p̄(1) < −1. In this case, we
can see in Fig27 that types IV1 and IV2 are allowable. With IV1, any allowable
0-simplex can be homologous to each other, so I p̄H0 = Z. The allowable 1-
cycles lie in regular strata, so all 1-cycles are trivial, thus I p̄H1 = 0. There is
no 2-cycle, so I p̄H2 = 0.

The other cases are obtained similarly.
The computation results are shown in Fig29.

Example 8.34. We provide some example loops, see Fig30. For p̄(1) < 0,
p̄(2) ⩾ 1, the loops in (a) are trivial, i.e., they are bounded by allowable 2-
chains.

For p̄(1) < 0, p̄(2) < 1, the only allowable loops in (b) are trivial loops in
regular stratum.
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p(1)

p(2)

1−1

1

2

0

Z
0
0

Z
0
0

Z
0
0

Z
0
0

Z
0
0

Z
0
0

Z
0
0

Z
0
0

Z
0
0

Z
0
0

Z⊕ Z⊕ Z⊕ Z
0
0

Z⊕ Z⊕ Z⊕ Z
0
0

Z⊕ Z⊕ Z⊕ Z
0
0

Z⊕ Z⊕ Z⊕ Z
0
0

Z
Z
0

Z
Z
0

Figure 29: Intersection homology of R2 with two singular lines:from top to
bottom is I p̄H0, I

p̄H1, I
p̄H2

Consider the case p̄(1) ⩾ 1, p̄(2) ⩽ 0 in (c), the loop 1, 2, 3 are trivial and
loop 4 is nontrivial, generated I p̄H1 = Z.

Analysis the results:

• In Fig29, from yellow region to green region, we “see” the two singular
lines; From yellow region to red region, we “see” the singular point at the
origin.

• It’s equal to regular homology H∗(R2) for nonnegative perversity. More
discussion can be seen in Conjecture 3.4.

• We divide the results in Fig29 into four parts:A,B,C,D, see Fig31.

In part A, type IV1 are allowable so I p̄H0 = Z. The only allowable 1-
simplex is IV1, so any 1-cycle lies in regular strata or touches X0. Hence
I p̄H1 = 0.

In part B, all 2-simplex are allowable, so I p̄H1 = 0. Since type II1 is
allowable in any case, so I p̄H0 = Z.
In part C, four types of 1-simplexes are not allowable, so there are four
path components, and thus I p̄H0 = Z⊕ Z⊕ Z⊕ Z. All allowable 1-cycle
lie in regular stratum, so I p̄H1 = 0.

In part D, the type II1 is allowed, so I p̄H0 = Z. There is a nontrivial
1-cycle that is the one encloses the origin.
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(a) p̄(1) < 0, p̄(2) ⩾ 1

(b) p̄(1) < 0, p̄(2) < 1

l1

l4

l2

l3

(c) p̄(1) ⩾ 1, p̄(2) ⩽ 0

Figure 30: Example loops

Conjecture 8.35. With nonnegative perversity, the intersection homology of
smooth 2-manifold is the same as the general homology.

Proof. (Not strict)

39



p(1)

p(2)

I0
IV1

IV2

I0
IV1

III2, IV2

I0
II1, IV1

I2, II2, III2, IV2

I0, II0
I1, II1, III1, IV1

I2, II2, III2, IV2

IV1

IV2

IV2

None
III2

III2, IV2

IV1

III2, IV2

II1, IV1

I2, II2, III2, IV2

II1
I2, II2, III2, IV2

II1
II2, III2

II0
I1, II1, III1, IV1

I2, II2, III2, IV2

II0
I1, II1
I2, II2, III2, IV2

II0
I1, II1
II2, III2

1−1

1

2

0

A
B

C

D

Z
0
0 Z

0
0

Z⊕ Z⊕ Z⊕ Z
0
0

Z
Z
0

Figure 31: We divide the results into A,B,C,D four parts

• Let η be any 2-simplex. It’s allowable if

– dim(η ∩X0) ⩽ 2− 2 + p̄(2) = p̄(2)

– dim(η ∩ (X1 −X0)) ⩽ 2− 1 = p̄(1) = p̄(1) + 1

When perversity is nonnegative, all 2-simplexes are allowable up to ho-
mologous, i.e., C p̄

2 (X) = C2(X) up to homologous.

• Let e be any 1-simplex. It is allowable if

– dim(e ∩X0) ⩽ 1− 2 + p̄(2) = p̄(2)− 1

– dim(e ∩ (X1 −X0)) ⩽ 1− 1 + p̄(1) = p̄(1)

From the condition, we find that all 1-simples intersect with X1 −X0 of
0-dimension, and uncontaining X0 is allowable. Since all 2-simplexes are
allowable and it is a smooth manifold, we can always (I guess) homologous
a 1-simplex to intersect with X1 −X0 of 0-dimension and do not contain
X0. Hence all 1-simplex is allowable up to homologous, i.e., C p̄

1 (X) =
C1(X) up to homologous.

• Let v be any 0-simplex. It is allowable if

– dim(v ∩X0) ⩽ −2 + p̄(2)

– dim(v ∩ (X1 −X0) ⩽ −1 + p̄(1))
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We find that all 0-simplex not intersecting X1 is allowable from the condi-
tion. Since all 1-simplexes are allowable and we are in a smooth manifold,
we can always (I guess) homologous a 0-simplex to a 0-simplex not inter-
sect X1. So, all 0-simplex is allowable up to homologous, C p̄

0 (X) = C0(X)
up to homologous.

Hence, I p̄H∗(X) = H∗(X).

Compute for the perversity that is different in the strata, the interesting
result is that when p̄(2) < 0, p̄(O1) = p̄(O2) ⩾ 1 and p̄(O3) = p̄(O4) < 0, we
have I p̄H0(X) = Z ⊕ Z, I p̄H1(X) = 0, I p̄H0(X) = 0, which means that we
only see one of the two singular lines. Other cases are the same and not very
interesting. The non-GM case is computed the same as the GM case but still
needs to be rechecked.

8.3 Compute R2 with one singulr point

The parametrization space of 2-band Hermitian system is R2 with a single sin-
gular at origin, see Fig32.

R2

singular point

Figure 32: R2 with a singular point

The types of simpleces are in Fig33 and the allowable simplex in each case
are in Fig34.

· · ·

··
·

···

···

· · ·

· · ·

0-simplex:

1-simplex:

2-simplex:

type I0 Intersects with X0

type I1 Intersects with X0

type I2 Intersects with X0

Figure 33: Types of simpleces
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I0
I1
I2

I1 I1
I2

p(2) = 0 p(2) = 1 p(2) = 2 p(2)

Figure 34: Allowable simplex in each case

p(2) = 0 p(2) = 1 p(2) = 2 p(2)

Z
Z
0

Z
0
0

Z
0
0

Z
0
0

Figure 35: Intersection homology of R2 with one singular point:from top to
bottom is I p̄H0, I

p̄H1, I
p̄H2

By similar calculation, the results are in Fig35.
Analysis: From yellow region to green region, the I p̄H1(R) varies from 0

to Z, meaning that we detect the singular point at the origin.

8.4 Intersection homology of swallowtail

We consider the filtered space R3 with filtration X3 ⊃ X2 ⊃ X1 ⊃ X0 ⊃ X−1 =
∅ where X3 = R3, X2 is the yellow surface, X1 is the red and purple intersection
lines and X0 is the origin point, see Fig36.

Since there is no nontrivial 3-cycle in C3(R3), so is I p̄C3(R3). Thus I p̄H3(R3) =
0.

Degree 0 intersection homology
Type of 0-simplex and 1-simplex is shown in Fig37.
The allowable 1 and 0-simplex for different perversity is shown in Fig38.
How to obtain Figure38: Here we take type III1 for example. Similar argu-

ment in Section?, the allowable 1-simplex e satisfies the inequality
dim(e ∩X0) ⩽ p̄(3)− 2

dim(e ∩ (X1 −X0)) ⩽ p̄(2)− 1

dim(e ∩ (X2 −X1)) ⩽ p̄(1)

We check Fig37 that the type III1 intersects X0 at 0 and intersects X1 − X0

at dimension 1. Taking the left hand side be 0 and 1 in the first and second
equation, respectively, we have the type III1 is allowable when 0 ⩽ p̄(3)−2 and
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Figure 36: Filtration of swallowtail

0-simplex:

1-simplex:

type I0 Only interseccts with X0

type II0 Only intersects with X1 −X0

type III0 Only intersects with X2 −X1

type I1 Only intersects with X1 −X0 at dim 1

type II1 Only intersects with X2 −X1 at dim 1

type III1 Intersects with X0 at dim 0 and with X1 −X0 at dim 1

type IV1 Intersects with X3 −X2 at dim 1 and with X1 −X0 at dim 0

type V Intersects with X2 −X1 at dim 1 and with X1 −X0 at dim 0

type V I1 Intersects with X0 at dim 0 and with X2 −X1 at dim 1

type V II1 Intersects with X3 −X2 at dim 1 and with X2 −X1 at dim 0

type V III1 Intersects with X0 at dim 0 and with X3 −X2 at dim 1

Figure 37: Types of simplices
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1 ⩽ p̄(2) − 1, i.e., p̄(3) ⩾ 2 and p̄(2) ⩾ 2, which is shown in Fig38. Also note
that we omit the intersection at X3 −X2 since it’s a regular stratum.

II0, I0

I1, IV1, III1, V III1

II0, I0
I1, IV1, V II1, III1, V III1

II0, III0, I0
I1, II1, IV1, V1, V II1, III1, V I1, V III1

I0
IV1, V III1

I0
IV1, V II1, V III1

III0, I0
II1, IV1, V1, V II1, V I1, V III1

I0
V III1

I0
V II1, V III1

III0, I0
II1, V II1, V I1, V III1

I0
V III1

I0
V II1, V III1

III0, I0
II1, V II1, V I1, V III1

p(2)

p(1)0

1

1

2

Figure 38: Classes of perversity. The yellow types are allowable when p̄(3) ⩾ 2
and the blue ones are allowable when p̄(3) ⩾ 3.

Sketch of computation: To illustrate more explicitly, we divide the p̄(1)p̄(2)p̄(3)-
space into three regions. In the region A, the type IV1 simplexes are allowable,
which means we can have path across singular lines X1 to connect three con-
nected components of X3 − X2; In the region B, the type V II1 simplexes are
allowable, which means we can have path across singular surface X2 − X1 to
connect three connected components of X3−X2; In the region C with p̄(3) ⩾ 2,
the type V III1 simplexes are allowable, which means we can have path across
X0 to connects the three connected components of X3 − X2; In the region C
with p̄(3) < 2, no simplexes hitting singular part X2 are allowable, hence we
could see the three connected components of X3 −X2.

II0, I0

I1, IV1, III1, V III1

II0, I0
I1, IV1, V II1, III1, V III1

II0, III0, I0
I1, II1, IV1, V1, V II1, III1, V I1, V III1

I0
IV1, V III1

I0
IV1, V II1, V III1

III0, I0
II1, IV1, V1, V II1, V I1, V III1

I0
V III1

I0
V II1, V III1

III0, I0
II1, V II1, V I1, V III1

I0
V III1

I0
V II1, V III1

III0, I0
II1, V II1, V I1, V III1

p(2)

p(1)0

1

1

2

A

C

B

Figure 39: We divided the p̄(1)p̄(2)p̄(3)-space into 3 parts

The degree 0 intersection homology is shown in Fig40, which can be formu-
lated as:

the degree-0 intersection homology=Z⊕ Z⊕ Z if p̄(1) < 0, p̄(2) < 1, and p̄(3) < 2

Z otherwise

Analysis: 0-degree intersection homology depict connected components. By
regulating the three parameters, the degree 0 intersection group changes from
Z to Z ⊕ Z ⊕ Z, during which we detect the three regions Reg I, II, III, which
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Figure 40: The red is for p̄(3) < 2; the green is for 2 ⩽ p̄(3) < 3; the purple is
for p̄(3) ⩾ 3

are the three connected components of the complementary space of swallowtail
in R3, see Fig36.

Degree 1 intersection homology
Type of 2-simplex is as following:

Table 2: Types of simplices

type I2 Only intersects with X2 −X1 at dim 2
type II2 Intersects with X3 −X2 at dim 2 and with X0 at dim 0
type III2 Intersects with X2 −X1 at dim 2 and with X0 at dim 0
type IV2 Intersects with X3 −X2 at dim 2 and with X1 −X0 at dim 1
type V2 Intersects with X3 −X2 at dim 2 and with X1 −X0 at dim 0
type V I2 Intersects with X2 −X1 at dim 2 and with X1 −X0 at dim 1
type V II2 Intersects with X2 −X1 at dim 2 and with X1 −X0 at dim 0
type V III2 Intersects with X3 −X2 at dim 2 and with X2 −X1 at dim 1
type IX2 Intersects with X3 −X2 at dim 2 and with X2 −X1 at dim 0
type X2 Intersects with X2 −X1 at dim 2, with X1 −X0 at dim 1, and with X0 at dim 0
type XI2 Intersects with X3 −X2 at dim 2, with X2 −X1 at dim 1, and with X0 at dim 0
type XII2 Intersects with X3 −X2 at dim 2, with X1 −X0 at dim 1, and with X0 at dim 0
type XIII2 Intersects with X3 −X2 at dim 2, with X2 −X1 at dim 1, and with X1 −X0 at dim 0

The allowable 2 and 1-simplex for different perversity is shown in Fig41.
Sketch of computation: Some important loops potentially could be genera-

tors of intersection homology groups; see Fig42. Besides those loops, we also
need to consider some loops that hit (not enclose) the singular spaces X2−X1,
X1 −X0, or X0.

To illustrte more explicitly, we divide the p̄(1)p̄(2)p̄(3)-space into five regions,
see Fig43.
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Figure 41: Classes of perversity. The blue is allowable when p̄(3) ⩾ 1 and the
yellow is allowable when p̄(3) ⩾ 2

Figure 42: Some important loops
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Figure 43: We divided the p̄(1)p̄(2)p̄(3)-space into five parts
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In the region A, the allowable 1-cycle cannot transverse the singular surface
at X2−X1 but can hit X1. Since the type V2 and IV2, the 1-cycle e is bounded.
Hence, the intersection homology here is all zero.

In the region B, no 1-cycles could hit X2. However, the type V2 is allowable,
so the 1-cycle e is trivial. Hence, the intersection homology here is all zero.

In the region C, no 1-cycles are allowed to transverse X2. The 1-cycle e is
allowed, but the type V2 is not allowable, making e a generator of intersection
homology. Hence, the intersection homology here is all Z.

In the region D, 1-cycles are allowed to transverse the singular surface X2.
The type V2, V III2, IX2, XIII2 are allowed, and the 1-cycles a, b, c, d, e, f
are all bounded, so the intersection homology here are all zero.

In the region E with p̄(3) < 1, the three 1-cycles a, b, c are all allowed and
they are none trivial. Since type V III2 and IX2 are allowed, e = d = a+ b+ c
which is also nontrivial. In the region E with p̄(3) ⩾ 1, the type II2 and XI2
are allowable, making d (also e) being bounded. Hence the intersection here is
Z⊕ Z⊕ Z/(a+ b+ c = 0)

The degree 1 intersection homology is shown in Fig44, which can be formu-
lated as

The degree-1 intersection homology=

Ze if p̄(1) < 0, p̄(2) < 0, and ∀p̄(3) ∈ Z

Za⊕ Zb⊕ Zc if p̄(1) ⩾ 0, p̄(2) < 0, and p̄(3) < 1

Za⊕ Zb⊕ Zc/(a+ b+ c = 0) if p̄(1) ⩾ 0, p̄(2) < 0, and p̄(3) ⩾ 1

0 otherwise

where the generators a, b, and c are shown in Fig??.
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Figure 44: The red is for p̄(3) < 1; the green is for 1 ⩽ p̄(3) < 2; the purple is
for p̄(3) ⩾ 2

Analysis:

• Loops in Fig?? are satisfying a + b + c = d, d = e in intersection groups
containing a, b, c, d, e. These equations mean the three singular lines can
fuse to the isolated singular lines.
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• The group Ze detects the isolated singular line in the swallowtail but does
not detect the three singular lines on the surface.

• The group Za⊕Zb⊕Zc/(a+ b+ c = 0) detects three singular lines on the
surface but does not detect the isolated singular line since loop e = d = 0.

• The group Za⊕Zb⊕Zc detects both the three singular lines on the surface
and the isolated singular line since loop e = d = a+ b+ c ̸= 0.

All of the above shows that the isolated singular line strongly relates to
the three singular lines on the surface.

Degree 2 intersection homology
The intersection cases of 3-simplex can be classified by intersection dimen-

sion. The equivalence condition for those 3-simpleces being alllowable is shown
in Fig45.
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p(1)20−1−2

−1

1

Figure 45: Allowable 2 and 3-simpleces for different perversity conditions; The
blue ones are allowable when p̄(3) ⩾ 1; The allowable 3-simplex with different
intersection dimension condition are shown in the picture, e.g., the 3-simplex
that does not intersect X2 − X1 is for p̄(1) < −2; Note that the condition
corresponds to whether 3-simplex could intersect the X0 is not denoted in the
picture. The 3-simplex intersect with X0 is allowed only when p̄(3) ⩾ 0

Sketch of computation: The possible nontrivial 2-cycles are the ones enclos-
ing the origin, which need the type of 2-simplexes that intersect with X1 −X0

at ⩾ 0 -dimension and X2 −X1 at ⩾ 1-dimension.
Therefore, for p̄(3) ⩾ 0, the 3-simplex intersecting X0 is allowed, so the

intersection homology for p̄(3) ⩾ 0 are all trivial, i.e., the green and purple one
in Fig47 are all zero.

To illustrte more explicitly, we divide the p̄(1)p̄(2)p̄(3)-space into three re-
gions, see Fig46.

In the region A with p̄(3) < 0, type V2, V III2, IX2 are allowable, so the
2-cycle enclose the origin are allowed. However, the 3-simplex cannot intersect
the origin, making this 2-cycle bounded. Hence, the intersection group is Z.

In the region B, no allowable 2-cycles can transverse the singular surface
X2; thus, no 2-cycles can enclose the origin. Hence, the intersection homology
here is zero.
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Figure 46: We divided the p̄(1)p̄(2)p̄(3)-space into three parts

In the region C, no allowable 2-cycles can hit singular line X1 −X0, so no
2-cycles can enclose the origin. Hence, the intersection homology here is zero.

The degree 2 intersection homology is shown in Fig47, which can be formu-
lated as

The degree-2 intersection homology=Z if p̄(1) ⩾ 0, p̄(2) ⩾ 0, and p̄(3) < 0

0 otherwise
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Figure 47: The red is for p̄(3) < 0; the green is for 0 ⩽ p̄(3) < 1; the purple is
for p̄(3) ⩾ 1

Analysis: The Z group is generated by a sphere enclosing the origin. Hence,
during the degree 2 intersection group changing from 0 to Z by tuning param-
eters, we detect the singular point MP (meeting point) at the origin.

8.5 An interesting phenomenon

By the results of intersection homology of R2 with a singular point at the origin,
R2 with two singular lines, and swallowtail in R3, we find the following interest-
ing phenomenon: It seems that the degree n intersection homology could only
detect the 3− (n+ 1) dimension singularities.
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Firstly, we need to describe “detect” more explicitly. It is clear that if an n-
chain enclose (not intersect with it) a r dimension singularity and no n+1-chain
with n-chain could intersect with r dimension singularity for some perversity,
we detect this singularity. For example, a sphere encloses the origin in the
swallowtail example. These are all the cases in the above computations.

Since an n-chain encloses an r dimension singularity, which means r = 3 −
(n+ 1), it seems we describe the phenomenon.

However, are there any other cases? For example, in Fig48, the yellow surface
is a singular surface, and the black 1-chain a intersects with these singular
surfaces. If there is no allowable 2-chain with 1-chain a being a boundary, then
this 1-chain is nontrivial and can detect the singular surface.

Figure 48: A possible nontrivial chain that not be the enclose type

But it’s impossible, by the following property.

Property 8.36. For an allowable n-chain γ, if it intersects with a singular
stratum Si, where Si has codimension i, and there exists (n + 1)-chain η with
∂η = γ and dim(γ ∩ Si) ⩾ dim(η ∩ Si)− 1, then γ is trivial.

Proof. Consider an allowable n-chain γ and (n + 1)-chain η in Cn+1(R3) with
∂η = γ. η may not be allowable, but we want to show η is allowable, i.e.,
dim(ηj ∩ Si) ⩽ n + 1 − i + p̄(i) for each (n + 1)-simplex ηj . Clearly, as a
subspace, dim(ηj ∩ Si) ⩽ dim(η ∩ Si) for each j. Consider the (n + 1)-simplex
ηj0 with dim(ηj0 ∩ Si) = dim(η ∩ Si). If ηj0 is allowable, then dim(ηj ∩ Si) ⩽
dim(η ∩ Si) = dim(ηj0 ∩ Si) ⩽ n+ 1− i+ p̄(i) for each j, complete the proof.

Since γ is allowable, so for each n-simplex γk in γ, we have dim(γk ∩ Si) ⩽
n − i + p̄(i). As a subspace, we also have dim(γk ∩ Si) ⩽ dim(γ ∩ Si) for each
k. Let γk0 be the n-simplex in γ with dim(γk0 ∩ Si) = dim(γ ∩ Si). Hence,
we have dim(γ ∩ Si) = dim(γk0

∩ Si) ⩽ n − i + p̄(i). Then we obtain that
p̄(i) ⩾ dim(γ ∩ Si) − n + i. Since dim(γ ∩ Si) ⩾ dim(η ∩ Si) − 1, p̄(i) ⩾
dim(η∩Si)−n−1+ i = dim(ηj0 ∩Si)−n−1+ i, meaning that ηj0 is allowable.

Hence γ is bounded by η in the intersction homology and thus γ is trivial.

Example 8.37. The 1-chain γ in Fig48 must be trivial, since dim(γ ∩ Si) =
0 ⩾ dim(η ∩ Si) = 1− 1 = 0

Remark 8.38. The condition dim(γ ∩ Si) ⩾ dim(η ∩ Si) − 1 holds for the
most cases. Otherwise, dim(γ ∩ Si) ⩽ dim(η ∩ Si)− 2, which is ridiculous since
dim(η) = dim(γ) + 1.
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Note that we discuss the cases where γ intersects with only one strata. It
can also be generalized to the case where γ intersects with finitely many strata.

Corollary 8.39. Let Γ be an allowable n-chain intersecting with {S1
i , · · · , Sni |i ∈

I, ni ∈ N}. If there exists an (n + 1)-chain η with ∂η = γ and dim(γ ∩ Sl
i) ⩽

dim(η ∩ Sl
i)− 1 for all i ∈ I and 1 ⩽ j ⩽ ni, then γ is trivial.

Therefore, to have the nonsingular generator of intersection homology, we
need the n-chain NOT intersects with strata, which means enclosing the sin-
gularities.

8.6 Further work: Intersection homotopy of the parame-
ter space

Beside intersection homology, we also need intersection homotopy of the param-
eter space.

By analogy with intersection homology, Gajer defined intersection homotopy
in [6] as follows:

Definition 8.40. Let (X,Ψ) be a space with filtration Ψ :Xn ⊇ Xn−1 ⊇
· · ·X1 ⊇ X0 ⊇ X−1 = ∅.

• Let P be a polyhedron (topological space with admissible triangulations)
of dimension k. A continuous map f : P → X is p̄-allowable with Ψ if
f−1(Xs) is contained in a sub polyhedron of P whose dimension less or
equal than k − s+ p̄(s), written as f−1(Xs) ⩽ k − s+ p̄(s).

• Let M be a PL manifold (manifold with admissible triangulations) of
dimension k. A continuous map f : M → X is of perversity p̄ with
respect to a filtration Ψ if f and f |∂M are p̄-allowable maps with respect
to Ψ .

• Let f0, f1 be two maps. f0, f1 are called p̄-homotopic if there is a homotopy
M × I → X between f0 and f1 which is of perversity p̄.

• Let x be the base point in the top stratum X0 − X1 of X. The kth
perversity p̄ intersection homotopy group, Ip̄πk(X,x), is the p̄-homotopy
classes of perversity p̄ maps (Sk, s) → (X,x). The group structure is
defined similarly to an ordinary homotopy group.

David Chataur proved the p̄-intersection Hurewicz theorem in [2].

Theorem 8.41. Let X be a CS set and p̄ a perversity such that Ip̄π0(X) = 0.

(i) For any regular point x, the p-intersection Hurewicz map

hp̄1 : Ip̄π1(X,x)→ Ip̄H̃1(X;Z)

induces an isomorphism between the abelianization of Ip̄π1(X,x) and

Ip̄H̃
p
1 (X;Z).
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(ii) Let k ≥ 2. Suppose that Ip̄πj(X) = Ip̄πj(L) = 0 for every link L of X,
and for each j ≤ k − 1. Then, the intersection Hurewicz homomorphism

hp̄j : Ip̄πj(X,x0)→ Ip̄H̃
p
j (X;Z)

is an isomorphism for j ≤ k, and a surjection for j = k + 1.

In [6], Gajer finds a simplicial set Gp̄(X) corresponding to a finitely filtered
space (X,Ψ). Gajer shows this simplicial set satisfies the Kan extension con-
dition to define simplicial homotopy groups on Gp̄(X). Then by definition we
have isomorphism Ip̄πk(X,x) ∼= πk(Gp̄(X),Gp̄(x)).

Remark 8.42. This isomorphism is the intersection version of πk(X,x) ∼=
πk(S(X), S(x)) where S(X) is the singular simplicial set of a topological space
X.

Based on Gajer’s work on Gp̄(X), David Chataur et al. developed a method
[1] to compute the intersection homotopy.

Here are the main concepts of the main theorem.

• top perversity, dual perversityDefine the dual perversityDp̄ asDp̄(S) :=
t̄(S)− p̄(S), where t̄ is the top perversity defined by t̄ := codimS − 2.

• (stratified homotopy link holinks(X,Y )) The homotopy link of Y in
X is space

holink(X,Y ) = {ω : [0, 1]→ X|ω(0) ∈ Y and ω(t) ∈ X−Y for t ∈ (0, 1]}

The stratified homotopy link is

holinks(X,Y ) = {ω ∈ holink(X,Y )|for some Si ∈ SX , ω((0, 1]) ⊂ Si}

and its filtered by

holinks(X,Y )j = {ω ∈ holinks(X,Y )|ω(1) ∈ Xj}

There are two evaluation map eval0 : holink(X,Y ) and eval0 : holinks(X,Y )→
Y . The local holink of x0 ∈ S, denoted by holinks(X,x0), is the fiber at
x0 of the map eval0 : holinks(X,S)→ S.

• Let Y be a subspace of a space X. Y is said to be forward tame in X if
there exists a neighborhood N of Y in X and a homotopy h : N × I → X
such that:

– h(−, 0) is the inclusion N ↪→ X

– the restriction h(−, t) : Y → X is the inclusion Y ↪→ X for all t ∈ I
– h(N, 1) = Y

– h((N \ Y )× [0, 1)) ⊂ X \ Y
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Let Y be a subspace of a stratified space X. Y is stratified forward tame
in X if there exists a neighborhood N of Y in X and a homotopy h :
N × I → X satisfying:

– h(−, 0) is the inclusion N ↪→ X

– for each t ∈ I, the restriction h(−, t) : Y → X is the inclusion Y ↪→ X

– h(N, 1) = Y

– h((N \ Y )× [0, 1)) ⊂ X \ Y is stratum-preserving along [0, 1).

Let X be a stratified metric space. X is a homotopically stratified space if
for any S ⊂ S̄′

1. S is forward tame in S ∪ S′,

2. the evaluation map eval0 : holink(S∪S′, S)→ S is a fibration. (Note
that holink(X,Y) is not a stratified space, so here is an ordinary
fibration, not a stratified fibration)

Moreover, if each stratum is a manifold without boundary and is locally
closed (subset A is called locally closed in X if A is open in its closure in
X) in X, then X is called a manifold homotopically stratified space.

Theorem 8.43. Let (X, p̄) be a manifold homotopically stratified space with
perversity p̄ which has a finite number of strata and connected local holinks.
Let Φ be the correspondence associating to any stratum S ∈ S the injection
SDp̄(S)+1 → DDp̄(S)+2, which is the standard inclusion in Top of the (Dp̄(S) +
1)-sphere in the (Dp̄(S) + 2)-ball Then the linkwise localization LϕX has the
homotopy type of the realization |Gp̄X| of the Gajer simplicial set associated to
(X, p̄).

The perverse manifold homotopically stratified space and connected local
holinks are defined in Definitions 2.1 and 2.2 in [1].

Fact 8.44. [17] πn(Y ) = πn(|Y |) for a pointed fibrant simplicial set Y after
defining an appropriate group structure on πn(Y ) for n ⩾ 1.

Hence, if Gp̄(X) is a pointed fibrant simplicial set, then Ip̄πn(X) = πn(Gp̄(X)) =
πn(|Gp̄(X)|) = πn(LϕX).

The way to compute LϕX is as following [1]: Let Φ : SX → Mor(Top) which
associates to each stratum S a morphism Φ(S) : AS → BS in Top.

Let SX be the set of strata of X.

• (f-local, f-local equivalence, and f-localization)[7] Let f : A → B
be a map in T between cofibrant spaces. A fibrant space W is called f -
local if the induced map of simplicial sets f∗ : Map(B,W )→ Map(A,W )
is a weak equivalence. A map g : X → Y between cofibrant spaces is an
f -local equivalence if the induced map of simplicial sets g∗ : Map(Y,W )→
Map(X,W ) is a weak equivalence for every f -local space W . An f -
localization of a space X is an f -local space X̄ together with an f -local
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equivalence jX : X → X̄. If T = sSet, let f : A → B be an injection. If
T = Top, let f : A → B be an inclusion of cell complexes. By Theorem
1.3.11 in [7], there exists a natural f -localization

jX : X → LfX

with jX a cofibration for every space X.

• (The property of LfX) We do not know clear what LfX is and it is
defined by properties: Let T be one of the categories Top or sSet. There
is a functorial factorization of every map p : X → Z of T as

X
i−→ L̄fX

q−→ Z,

called the fibrewise f -localization of p, such that the following properties
are satisfied:

1. The map q is a fibration with f -local fibres and the map i is a cofi-
bration and an f -local equivalence. Moreover, for any z ∈ Z, the
map induced by i between the homotopy fibres is an f -localization.

2. For any decomposition of p as

X
j−→W

r−→ Z,

where r a fibration with f -local fibres, there exists k : L̄fX → W
such that k ◦ i = j and r ◦ k = q. Moreover, if j is another fibrewise
f -localization, then k is a weak equivalence.

• (Construction of linkwise Φ-localization) A recursion relation de-
fines LΦX. The linkwise Φ-localization LΦX is defined as the homotopy
pushout of

L̄Φ(S)(LΦ holinks(X,S))← LΦ holinks(X,S)→ LΦ(X − S)

Where S is a bottom stratum of X. Since X − S has one less stratum as
X, so we set LΦX = X if X has only regular strata.
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