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Ref: first lecture in https://yuzhangmath.github.io/, by Yu Zhang.

There are some choices for topologists doing topology.

• Work with Top whose objects are topology spaces and morphisms are continuous

maps. (Not a good choice)

• Work with CW complexes (Not a good choice)

• Work with compactly generated weakly Hausdorrf spaces (Nice)

• Work with simplicial sets (Nice)

The last choice is strange since a simplicial set is not a space!

You may understand why after this lecture.
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Model categories
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Usually, there is a class of morphisms that is unable to inverse but similar to

isomorphism to some extent, e.g., weak homotopy equivalence between topological

spaces.
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There are some axioms to define such a class in a category C. In different occasion,

we choose different axioms.

Definition

(Axioms for weak equivalence) Here are some commonly applied hypotheses for

weak equivalence, denoted by W.

• Two-of-three: Let g : X → Y , f : Y → Z be two morphisms. If two of g , f ,

f ◦ g lie in W, then so is the other.

• Two-of-six: For any composable triple of morphisms as follows, if

g ◦ f , h ◦ g ∈ W, then f , g , h, h ◦ g ◦ f ∈ W.

•

• •

•

h◦g

g

g◦f

f

h◦g◦f

h

• W defines a wide subcategory: A wide category is a subcategory containing all

objects. This means W is closed under composition and contains all identities.
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Definition

• Closed under retracts in the arrow category: If s ∈ W, then so is its retract t.

• • •

• • •
t

id

s t

id

• It’s reasonable to suppose W contains all isomorphisms. If not, at the bare

minimum, W contains all identities.

A homotopical category is a pair (C,W) where C is a category and W is the weak

equivalence (satisfying some of the above properties).

Zhou Fang

Homotopy Theory via Model Categories and their Underlying ∞-Categories 6

/ 73



Replace all “∈ W” to isomorphism; these properties obviously hold. This shows weak

equivalence has the same behavior as isomorphism in this context, although

weak equivalence may not be an isomorphism.

Two-of-three: Let g : X → Y , f : Y → Z be two morphisms. If two of g , f , f ◦ g are

isomorphisms, then so is the other.

Two-of-six: For any composable triple of morphisms as follows, if g ◦ f , h ◦ g are

isomorphisms, then f , g , h, h ◦ g ◦ f ∈ W.

•

• •

•

h◦g

g

g◦f

f

h◦g◦f

h
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The following provides a method to construct a class of morphisms automatically

satisfying the above hypothesis of weak equivalences.

Property

Given a functor F : C→ D, let W consists of morphims that inverted by functor

F , i.e.,

W = {f ∈ Mor(C)|F (f ) is an isomorphims in D}

Then W satisfies all of above hypothesis.
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The main goal in this part is that the weak equivalence of the model category precisely

consists of those morphisms inverted by the Gabriel-Zisman localization functor.

Definition

A weak factorization system (L,R) on a category M is comprised of two classes of

morphisms L and R satisfying the following properties:

• factorization: For any f ∈ Mor(M), there exists l ∈ L, r ∈ R such that f = rl

• lifting property Morphisms in L has left lifting property with respect to each

morphims in R.
• closed under retratcts L and R are each closed under retracts in the arrow

category.
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Property

L contains the isomorphisms and is closed under coproduct, pushout, retract, and

(transfinite) composition. R has similar closed properties.

All of the proof has the mode:

• Pick a clever diagram.

• Use universal property or lifting property to construct morphisms.

We only show L is closed under transfinite composition here; the others are similar.

The transfinite composition of an infinite composable morphisms

C0
l0−→ C1

l1−→ C2 → · · · is the data l : C0 → colimCi
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C0 B

C1

C2

...

colim Ci A

r∈R

f

C0 B

C1

C2

...

colim Ci A

r∈R

f

C0 B

C1

C2

...

colim Ci A

r∈R

f

C0 B

C1

C2

...

colim Ci A

r∈R

f
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For any following diagram with [r : B → A] ∈ R, we want to construct a lift

colimci → B.

f : colimCi → A is equivalent to Ci → A such that diagram commutes.

Then we lift at each square:

When construct all Ci → B, these morphisms are equivalent to colimCi → B, which is

the lifting.
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Definition

A model structure on homotopical category (M ,W) consists of:

• weak equivalence W, data from homotopical category. Morphisms in W are

denoted by
∼−→

• cofibrations C, morphisms in C are denoted by ↣

• fibrations F , morphisms in F are denoted by ↠

such that (C,F ∩ W) and (C ∩ W,F) define weak factorzation systems on M .

We refer to morphisms in C ∩W as trivial cofibrations, denoted by
∼
↣ and

morphisms in F ∩W as trivial fibrations, denoted by
∼
↠.
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Property

The left class L is determined by right class R in a factorization system: L
consists of morphisms having left lifting property with respect to any morphisms in R.

The right class R is determined by left class L in a factorization system: R
consist of morphisms having right lifting property with respect to any morphisms in L.

Remark

Model structure on Top is in Example 1.1.7 in [Maciel]Maciel.
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Proof.

The left class consists of morphisms that have left lifting property with respect to the

right class. Any left class has left lifting property with respect to the right class. It

suffices to show that any f has left lifting property with respect to the right class lies

in the left class. In particular, f has left lifting to its right factoring

• •

• •
f

l

r

id

t

• • •

• • •
f

id

l

id

f

t r

So f is a retraction of l . Since the left

class is closed under retract, so f ∈ L.

Corollary

A model structure on M (if exits) is uniquely determined by any two of the C, F , W.
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Gabriel-Zisman localization functor
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Definition

Let X be the category consisting of the following data:

• ob(X) = X0,X1. We call X1 the object of vertices and X1 the object of edges.

• HomX(X0,X0) = id , HomX(X1,X1) = id , HomX(X0,X1) = ∅,
HomX(X1,X0) = s, t. We call s the source and call t the target.

A directed graph is a functor X → Set.

Remark

• A direct graph can be viewed as a set of arrows from a given category.

• Directed graph in category theory ̸= directed graph in graph theory

• Let C,D be two categories. A graph of shape D in C is a functor D→ C. When

D is weird, it is not just “a set of arrows”. So, the directed graph in category

theory is much like a “graph” in graph theory.
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A free category is freely generated by the composition of arrows.

Definition

A free category (also called path category) on a directed graph G : X → Set,denoted

by PG is a category consists of following data:

• ob(PG ) = X0

• For x , y ∈ ob(PG ), let HomPG (x , y) consists of composable tuples in X1, denoted

as (x ; f1, f2, · · · , fn; x)
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Idea of constructing C[W−1]

Tool Usage

Directed graph and opposite category Add inverse of morphism in W formally

free category Make a directed graph a category

We all know C[W−1] is a category formally adding the inverse of morphisms in W.

The key to achieving this is using the opposite category!
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Construction

Let C be a category and W a class of morphism in C. The category of fractions

C[W−1] is obtained by the following steps:

• Let Wop denote the corresponding class of morphisms in Cop.

• Let G : X → Set where G (X0) = ob(C),

G(X1) = Mor(C)
∐

x,y∈ob(C) Wop(x, y), where Wop(x , y) consists of all

morphisms in Wop with x and y be its source and target, respectively. Hence, the

morphism of G between x and y is C(x , y)
∐
Wop(x , y). The arrows in Wop is

denoted by f̄ corresponding to f ∈ W. The source and target map G (s), G (t) is

obvious.

• We obtain a free category PG on G and we quotient it by the following
relationship:

• For any x ∈ ob(C), (x ; idx ; x) ∼ (x ; ∅; x)
• For all f : x → y , g : y → z in Mor(C) (x ; f , g ; z) ∼ (x ; gf ; z)

• For all f : x → y in W, (x ; f , f̄ ; x) ∼ (x ; idx ; x) and (y ; f̄ , f ; y) ∼ (y ; idy ; y)
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• There is an evident embedding:ι : C→ C[W−1]

• There is a similar universal property analogous to fraction rings.

Property

Let C[W−1] be the category of fractions of category C and class of morphisms W.

For any category D, − ◦ ι : Fun(C[W−1],D)→ Fun(C,D) is fully faithful embedding

with essential image Fun
W7→∼=

(C,D), where Fun
W7→∼=

(C,D) consists of functors inverting W.

Hence, Fun(C[W−1],D) ∼= Fun
W7→∼=

(C,D) is isomorphism of categories.
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We let M be a model category and admit terminal object ∗ and initial object ∅. Idea:
Use unique morphism X → ∗ and ∅ → X to define cofibrant/fibrant.

Definition

Let X be an object in a model category M . Say X is:

• fibrant if X → ∗ is a fibration;

• cofibrant if ∅ → X is a cofibration.
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Roughly speaking, a functorial factorization is a triple of functors L,R : M2 →M2,

E : M2 →M such that for any commutative diagram on the left, there is a

commutative diagram on the right.

X Z

Y W

f

u

g

v

X Z

Ef Eg

Y W

u

Lf

f

Lg

g
E(u,v)

Rf Rg

v
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We always assume our model categories have functorial factorization by (L,R)(Not
true for all model categories, but it is difficult to find model categories that fail to

satisfy this condition)

X Y

∗ ∗
g

f

h

id

X Y

RX RY

∗ ∗

f

Rf

id

(We apply functorial factorization. Rg is uniquely determined by X , so denoted as RX ;

R(f , id) is uniquely determined by f so denoted as Rf .) Hence, R is a functor by

functorial factorization.
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Construction

X ∗

RX

∼

∅ X

QX

∼

Obtain fibrant-cofibrant objects RQX or

QRX , e.g.,

∅ X

QX ∗

RQX

∼

∼

There exists a comparison weak equivalence:

RQX
∼−→ QRX

(The construction see page 13 in [Riehl19])
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Construction

Fibrant and cofibrant replacement. Let M be a model category.

By functorial factorizations, we have:

• A fibrant replacement functor R : M →M

• A cofibrant replacement functor Q : M →M

equipped with natural weak equivalences(natural transformation and weak

equivalence for each component):

η : idM
∼
=⇒ R and ϵ : Q

∼
=⇒ idM
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Homotopy theory by model

categories
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There are two choices for defining homotopy, called the “handness” of homotopy. This

comes from “dual” in category theory.(A
∐

A is dual to A× A)

Construction

Let A be an object in a model category.

A cylinder object for A is given by a factorization of fold map

A
∐

A A

cyl(A)

(1A,1A)

(i0,i1)

q∼
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More explicitly,

A A
∐

A A A A
∐

A A

A cyl(A)

A

1A

ι

(1A,1A)
1A

ι

1A

ι

i0
(i0,i1)

1A

ι

i1

∼
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Construction

A path object for A is given by a factorization of diagonal map

path(A)

A A× A

(p0,p1)

(1A,1A)

j∼

A A× A A A A× A A

A path(A)

A

1A 1A

1A 1A
(1A,1A) (p0,p1)p0

p1

∼
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Definition

Let f , g : A→ B be two morphisms in a model category M . A left homotopy H

from f to g is a morphism H : cyl(A)→ B such that the following diagram

commutes:

A cyl(A) A

B

i0

f
H

i1

g

If the left homotopy exists, we write f ∼l g .

• A
i0−→ cyl(A)

i1←− A is the data of cylinder object of A.

• The form Hi0 = Hi1 is similar to the ordinary homotopy theory
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We can use left homotopy to define homotopy on spectra.

Define spectrum Cyl(E ) by Cyl(E )n := [0, 1]+ ∧ En with evident structure maps.

Define i0 : E → Cyl(E ) by (i0)n : En ≃ {0}+ ∧ En ↪→ [0, 1]+ ∧ En.

Define i1 : E → Cyl(E ) by (i1)n : En ≃ {1}+ ∧ En ↪→ [0, 1]+ ∧ En.

Two pmaps f , g : E → F are homotopic if ∃ pmap H : Cyl(E )→ F s.t., Hi0 = f , and

Hi1 = g .

Ref:Lecture 4 inhttps://services.math.duke.edu/~kgw/8803_Stable/
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Definition

A right homotopy K from f to g is a morphism H : A→ path(B) such that the

following diagram commutes:

A

B path(B) B

f
K

g

p0 p1

If the right homotopy exists, we write f ∼r g .
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(Homotopy is preserved by composition) Let f , g : A→ B be left (resp. right)

homotopic. Then, for any h : A′ → A and k : B → B ′, kfh is left (resp. right)

homotopic to kgh.

When considering morphisms between fibrant or cofibrant objects, the left and right

homotopy are nice. (So that is why we need fibrant/cofibrant replacement)

We consider the homotopy relation on HomM(A,B) in the following.

• If A is cofibrant and B is fibrant, then the left homotopy and right homotopy

define equivalence relations on HomM(A,B), and the two relations coincide.

• (To what extent the weak equivalence has inverse) Let A, B be

fibrant-cofibrant objects. Then f is weak equivalence if and only if f has a

homotopy inverse.
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Weak equivalence in the model

category are precisely those inverted

by localization functor
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Theorem

A morphism in a model category M is weak equivalence if and only if it is inverted by

the localization functor F : M →M[W−1].

Proof(sketch):

Idea: construct some “tool” categories
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Construction

• Mcf :

objects are fibrant-cofibrant objects in M

for x , y ∈M , HomMcf
(x , y) = HomM(x , y)

• hMcf :

objects are fibrant-cofibrant objects in M

for x , y ∈M , HomhMcf (x , y) = HomM(x , y)/ ∼
where the relation ∼ is the equivalence relation defined by left homotopy (or right

homotopy).

• HoM :

ob(HoM) = ob(M)

for x , y ∈M , HomHoM(x , y) = HomM(RQx ,RQy)/ ∼
HoM is called the homotopy category. The relationship between an abelian

category and its derived category parallels the relationship between a model

category and its homotopy category.
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M Mcf hMcf

HoM

RQ

γ

π

ν

where γ is bijective on objects and ν is fully faithful. (By definition, it is easy to check

its commute)
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Show M[W−1] ∼= HoM

• See Theorem 3.4.5 in[Riehl19]. Note that the isomorphism is constructed by

factoring F along γ

M M[W−1]

HoM

F

γ iso

• The right hand side M[W−1] does not contain any information of fibrations or

cofibrations! Hence, we can only use weak equivalence to describe the homotopy

theory (which is known as the relative category). The fibrations and cofibrations

are technical ways to do computation.
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Finally, we show F : M →M[W−1], [f : X → Y ] 7→ Ff . Ff is isomorphism if and only

if f is weak equivalence.

“⇔′′ Trivial.

“⇒′′ Assume Ff is isomorphism. ⇒ γf is isomorphism.

ν is fully faithful ⇒ νγf is isomorphism

Diagram commutes ⇒ πRQf is isomorphism

M Mcf hMcf

HoM

M[W−1]

γ

RQ

F

π

ν

iso
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Mcf
π−→ hMcf , RQf 7→ RQf

RQf ∈ HomM(RQX ,RQY )⇒ RQF is a morphism between fibrant-cofibrant objects

RQf ∈ HomM(RQX ,RQY )/ ∼ is an isomorphism⇒ RQf has homotopy inverse

⇒ RQf is a weak equivalence by the above property.
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By naturality of η : id ⇒ R and ϵ : Q ⇒ id , we have

X Y

QX QY

RQX RQY

f

ηX

Qf

ϵQX

ηY

ϵQY

RQf

ϵQX , ϵQY , RQf are weak equivalence, by two of three, Qf is weak equivalence.

Qf , ηX , ηY are weak equivalence, by two of three, f is weak equivalence.
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Definition

A functor between homotopical categories is a homotopical functor if it preserves

the classes of weak equivalences.

• Homotopical functor is NICE!

• Not all functors are homotopical functors.

• Derived functor is a universal homotopical approximation to a given functor.

(Analog to CW approximation)
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What does universal here mean? The universal is described by absolute Kan

extension. Unlike ordinary universal property, absolute Kan extension seems to have

two kinds of “uniqueness” in the universal property. This is because morphism has only

one way of composing. However, a natural transformation has two ways to do

composition (Kan extension shows the natural transformation is “best” in the context

of vertical composition, and absolute Kan extension provides natural

transformation is “best” in the context of horizontal composition)
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Definition

Let F : C→ E, K : C→ D be functors among categories.

A left Kan extension of F along K is a pair (LanKF : D→ E, η : F ⇒ LanKF ◦ K ),

where LanKF is a functor and η is a natural transformation, such that for any pair

(G : D→ E, γ : F ⇒ GK ), there exists a unique natural transformation

ζ : LanKF ⇒ G such that ζη = γ.

C E

D

F

K
η

LanKF

Let F : C→ E, K : C→ D be functors among categories.
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Definition

A left Kan extension is absolute if for any functor H : E→ G,

(H ◦ LanKF : D→ G,Hη) is a left Kan extension of HF along K .

Similarly one can define right Kan extension and absolute right Kan extension.
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Since for model category M[W−1] ∼= HoM , we define homotopy category of a

homotopical category C as HoC := C[W−1]. So we can write ι : C→ HoC be the

localization functor.

Let F : M → K be a functor between homotopical categories. Let γ : M → HoM ,

δ : K → HoK be localization functors.
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Definition

A right derived functor of F is a homotopical functor RF together with a natural

transformation ρ : F ⇒ RF such that (RF , id ◦ (δρ) = δρ) is absolute left Kan

extension of δF along γ.

M K HoK

K

HoM

F

γ

RF

δ

δρ δ

id

RF

where RF is the universal map of HoK ∼= K [W ′−1], since δRF inverts weak

equivalence of M (RF is homotopical). We refer to RF : HoM → HoK as the total

right derived funtors.
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Remark

The total left (resp. right) derived functor is the functor between homotopy

categories induced from given functors between categories by derived left (resp.

right) functors.
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Quillen adjunction and Quillen

equivalence
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Property

Let F : M ⇆ K : G be a pair of adjunctions between model categories. TFAE:

• The left adjoint is left Quillen.

• The right adjoint is right Quillen.

• The left adjoint preserves cofibrations, and the right adjoint preserves fibrations.

• The left adjoint preserves trivial cofibrations, and the right adjoint preserves trivial

fibrations.

The pair that satisfies one of these conditions is called Quillen adjunction.
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Theorem

If F : M → K : G is a Quillen adjunction, then the total left derived functor of the

left adjoint functor and total right derived functor of the right adjoint functor forms

an adjunction, i.e., LF : HoM ⇆ HoK : RG

“Two model categories present equivalent homotopy theories if there exists a finite

sequence of model categories and a zig-zag of Quillen equivalences between them.”

[Riehl19]
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Slogan: Quillen equivalence is an equivalence between homotopy categories

induced by a Quillen adjunction by derived functors.

Definition

A Quillen adjunction F : M → K : G between model categories is a Quillen

equivalence if one of the following equivalent conditions holds:

• The total left derived functor of the left adjoint LF : HoM → HoK is an

equivalence of categories.

• The total right derived functor of the right adjoint RG : HoK → HoM is an

equivalence of categories.

Remark

For other equivalence definitions, see Definition 4.5.1 in [Riehl19].
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Property

There is a Quillen equivalence between the category of simplicial set and the category

of topological space: the geometric realization is left adjoint to the functor Sing(−).
Hence the homotopy theory of simplicial set is the same as the homotopy theory of

topological spaces.
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Models for ∞-categories
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Note that the “model” here is different from the model category.

Models for ∞-categories (Here ∞-categories means (∞, 1)-categories)

• Quasi-categories (simplicial sets X• such that X• → ∗ has right lifting property to

inner horns.)

• Quasi-categories are one of the most simple models for ∞-category, so in some cases

we just refer to quasi-categories as ∞-categories.

• Homotopy category of quasi-categories have defined at last time

• Category enriched over Kan complexes

• The property of the Kan complex allows one to find the inverse for any i-morphism

in a Kan complex, i ⩾ 1, which is the i + 1-morphism in the Kan complex enriched

category.

• we can define homotopy category of simplicialy enriched categories.
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Remark

• Other models of ∞-categories, see [Bergner09].

• What’s on earth an ∞-category which is independent of models? See [Infcos] and

chap 9 in [Riehl19].
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Property

TFAE:

• A simplicially enriched category with ob(C)

• A simplicial object C• : ∆
op → Cat satisfying: ob(Cn) = ob(C) and each functor

Cn → Cm is identity on objects.
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We define the homotopy theory as a simplicially enriched category by defining its

homotopy category.

Definition

Let C be a simplicially enriched category; we define the homotopy category HoC

consisting of the following data:

• ob(HoC) = ob(C)

• For x , y ∈ ob(HoC), let HomHoC(x , y) := π0(HomC(x , y)) where π0 is the π0 of

simplicial sets.
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Quasi-categories and categories enriched over the Kan complex are already admitted in

homotopy theory.

• We have known from model theory that we can obtain homotopy theory.

• What if we introduce model structure on quasi-categories and categories enriched

over Kan complexes?

⇒ Homotopy theory of homotopy theory!

Zhou Fang

Homotopy Theory via Model Categories and their Underlying ∞-Categories 60

/ 73



Model structure on sSet (and thus on the subcategory of quasi-categories)

• Quillen model structure, sSetQuillen, Example 1.2.13 in [Maciel]. Firant objects

are Kan complexes

• Joyal model structure, sSetJoyal , Example 1.2.15 in [Maciel]. Fibrant objects are

all quasi-categories.

Model structure on CatsSet (and thus on category enriched over Kan complexes)

• Bergner model structure, see Example 1.2.2 in [Maciel]. Fibrant objects are

categories enriched over Kan complexes.
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∞-category that has the same

homotopy theory with a given

model category
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Motivation of finding ∞-categories of model categories.

Definition

A relative category C is a pair (undC,weqC), where undC is a category and weqC is a

wide category. We refer to morphisms in weqC as weak equivalence in C.

There are many ways to homotopy theory; two are model categories (or, more

generally, relative categories) and (∞, 1)-categories.
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Given a model category, one can obtain an ∞-category with same homotopy

theory as model category.
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Hammock localization RelCat
LH−→ CatsSet

Given a model category, we can replace hom-set to simplicial sets with store

homotopical data better. This is the motivation for Hammock localization.

Definition

Let C be a category together with a subcollection W of morphisms. We define a

simplicially enriched category LH(C,W), called the hammock localization of C by W
as following:

(1)ob(LH(C,W)) = ob(C)
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Definition

(2) Let x , y ∈ ob(LH(C,W)), the set LH(C,W)(x , y) is a simplicial set defined as

follows:

• LH(C,W)(x , y)n is a collection of elements of the form:

satisfying the following properties:

1. all vertical maps lie in W
2. maps in the same column have the same direction

3. maps pointing left lie in W
4. adjacent columns have different directions

5. every column has a non-identity map

We call such an element in LH(C,W)(x , y)n a hammock of width n and length k

• The face map d i deletes the i-th row

• The degeneracy map s i repeats the i-th row

Zhou Fang

Homotopy Theory via Model Categories and their Underlying ∞-Categories 66

/ 73



C0,1 C0,2 · · · C0,k

C1,1 C1,2 · · · C1,k

X · · · · · · · · · Y

Cn,1 Cn,2 · · · Cn,k
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Fact

A fibrant object in (CatsSet)Bergner is a category enriched over Kan complex, i.e., an

∞-category.

Hence, a fibrant replacement can obtain an ∞-cateory.

• There exists an Ex∞ functor that replace a simplicial set with a Kan complex.

• For C ∈ CatsSet , we define

RB(C) =

ob(RB(C)) = ob(C)

for x , y ∈ ob(R(C)), R(C)(x , y) = Ex∞C(x , y)

• Here we do not use the natural fibrant replacement functor as we introduced

before. The advantege is ob(RB(C)) = ob(C), we carries the information of

the objects.

Zhou Fang

Homotopy Theory via Model Categories and their Underlying ∞-Categories 68

/ 73



We’ve obtained a category enriched over the Kan complex. The next step is to obtain

a quasi-category from the category enriched by Kan complexes. (Quasi-category is

easier: a quasi-category is a simplicial set, but each hom in category enriched by Kan

complexed is a simplicial set)

This step we use Homotopy coherent nerve CatsSet
Nhc

−−→ sSet
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We can obtain a model category’s underlying ∞-category by applying the functor

ud : Nhc ◦MB ◦ LH .

Property

For any model category M , HoM ≃ h(ud(M)).
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Remark

• Model categories are 1-category representations of ∞-categories.

• Not all ∞-categories come from model categories; one important condition for

∞-categories to come from model categories is that the ∞-categories have all

limits and colimits.
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Summary

Let M be a model category.

• Model structure can give a homotopy theory on a general category

• HoM ∼= M[W−1]

• Weak equivalences in M are precisely morphisms inverted by localization functor

ι : M →M[W−1]

• We use Quillen equivalence to describe the equivalence of different homotopy

theories.

• There is an ∞-category for each model category which has same homotopy theory.
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Thanks!
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