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To compute intersection homotopy, we need to compute the homotopy pushout, which

is a homotopy colimit.
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From derived functor to homotopy

limit and colimit



Definition

A functor between homotopical categories is a homotopical functor if it preserves

the classes of weak equivalences.

• Homotopical functor is NICE!

• Not all functors are homotopical functors.

• Derived functor is a universal homotopical approximation to a given functor.

(Analog to CW approximation)
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What does universal here mean?

The universal is described by absolute Kan extension.

• Unlike ordinary universal property, absolute Kan extension seems to have two

kinds of “uniqueness” (different from ordinary universal property)

• This comes from that a natural transformation has two ways to do composition

(vertical composition and horizontal composition), but the ordinary morphism

only has one way of composing.
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Definition

Let F : C→ E, K : C→ D be functors among categories.

A left Kan extension of F along K is a pair (LanKF : D→ E, η : F ⇒ LanKF ◦ K ),

where LanKF is a functor and η is a natural transformation, such that for any pair

(G : D→ E, γ : F ⇒ GK ), there exists a unique natural transformation

ζ : LanKF ⇒ G such that ζη = γ.

C E

D

F

K
η

LanKF

Kan extension shows the natural transformation is “best” in the context of vertical

composition

Zhou Fang Homotopy limit and colimit I 4 / 27



Definition

A left Kan extension is absolute if for any functor H : E→ G,

(H ◦ LanKF : D→ G,Hη) is a left Kan extension of HF along K .

C E G

D

F

K

H

LanKF

absolute Kan extension provides natural transformation is “best” in the context of

horizontal composition

Similarly one can define right Kan extension and absolute right Kan extension.
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Since for model category M[W−1] ∼= HoM , we define homotopy category of a

homotopical category C as HoC := C[W−1]. So we can write ι : C→ HoC be the

localization functor.

Let F : M → K be a functor between homotopical categories. Let γ : M → HoM ,

δ : K → HoK be localization functors.
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Definition

A right derived functor of F is a homotopical functor RF together with a natural

transformation ρ : F ⇒ RF such that (RF , id ◦ (δρ) = δρ) is absolute left Kan

extension of δF along γ.

M K HoK

K

HoM

F

γ

RF

δ

δρ δ

id

RF

where RF is the universal map of HoK ∼= K [W ′−1], since δRF inverts weak

equivalence of M (RF is homotopical). We refer to RF : HoM → HoK as the total

right derived funtors.
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More simply the diagram can be drawn as

M K

HoM HoK

γ

F

δρ

δ

RF

Remark

The total left (resp. right) derived functor is the universal functor (absolute Kan

extension) between homotopy categories induced by derived left (resp. right)

functors.
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Definition

Let F : M → K be a functor between model categories. F is left Quillen if it

preserves cofibrations, trivial cofibrations, and cofibrant objects. F is right Quillen if

it preserves fibrations, trivial fibrations, and fibration objects.
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Property

Let F : M ⇆ K : G be a pair of adjunctions between model categories. TFAE:

• The left adjoint is left Quillen.

• The right adjoint is right Quillen.

• The left adjoint preserves cofibrations, and the right adjoint preserves fibrations.

• The left adjoint preserves trivial cofibrations, and the right adjoint preserves trivial

fibrations.

The pair that satisfies one of these conditions is called Quillen adjunction.
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Total derived funtor preserves Quillen adjunction.

Theorem

If F : M → K : G is a Quillen adjunction, then the total left derived functor of the

left adjoint functor LF and total right derived functor of the right adjoint functor RG

forms an adjunction, i.e., LF : HoM ⇆ HoK : RG
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There is a useful way to create left/right derived functors, using left/right deformation

as following.

Definition

A left deformation of model category M provides a natural transformation which is

weak equivalence at each level from an endofuntor E to the identity functor, i.e., a

natural weak equivalence q : E ⇒ id

Zhou Fang Homotopy limit and colimit I 12 / 27



Remark

• An example of left deformation is the cofibrant replacement Q in a model

category.

• The endofunctor E in the left deformation must be homotopical. By naturality,

we have

EX X

EY Y

Ef

qX

f

qY

qX , qY are weak equivalence, if f is weak equivalence, then Ef is weak

equivalence by two-of-three property.
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Construction

Denote Cc be any full subcategory of C containing (not necessarily equal) the image

of functor E . We call Cc the subcategory of cofibrant objects.

Remark

It has no relation with cofibrant objects defined in the frame of Quillen’s model

structure. (A confusing name!)

Definition

Let F : C→ D be functors between homotopical categories. We say F is left

deformable if there exists a left deformation on C and a subcategory of cofibrant

objects Cc s.t. F is homotopical restrict to Cc .
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F left deformable ⇒ F is homotopical on a very nice subcategory Cc

So it’s reasonable that we can “deform” the homotopical functor over subcategory to

the homotopical functor over whole category, which is the derived fuctor (derived

functor is the universal homotopical functor approximation)

Theorem

Let F : C→ D be a left deformable functor corresponding to the left deformation

q : E ⇒ id of C. Then FE is a left derived functor of F .

Fact

Let F : M → K be a functor from a model category to a category with a class of

weak equivalences satisfying the two-of-three property. If F carries trivial fibrations in

M to weak equivalences in K , then F carries all weak equivalences between fibrant

objects in M to weak equivalences in K .

Zhou Fang Homotopy limit and colimit I 15 / 27



Property

The left derived functor of any left Quillen functor F (between model category) is

FQ, where Q is the cofibrant replacement functor. The right derived functor of any

right Quillen functor G (between model category) is GR, where R is the fibrant

replacement functor.

Proof.

We only show G : K →M has right deformation η : id ⇒ R. We w.t.s. G is

homotopical on the full subcategory spanned by image of R, denoted by KC . G

carries trivial fibrations to trivial fibrations since G is right Quillen. So by the

fact G carries all weak equivalence RX
∼−→ RY to weak equivalences, leading to G is

right deformable. So by property GR is the right derived functor.
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Here are two pushouts. We have Sn−1 = Sn−1, Dn ∼ ∗, but the pushout does not

satisfying Sn ∼ ∗!

Sn−1 Dn

Dn Sn
⌜

Sn−1 ∗

∗ ∗⌜
“The pushout functor fails to preserves component wise homotopy

equivalences.

When the functor fails to be homotopical, the next best option is to replace it by a

derived functor.”[Riehl19].
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Notation: CD := Fun(D,C).

Construction

(limit and colimit functor) Let C be a category, and D be a small category. We can

define a colimit functor colim : CD → C as F 7→ colimF . Similarly we can define limit

funcor lim : CD → C, F 7→ limF .

colim : MD →M is a functor. For α : F ⇒ G , there is a unique map factor through

colimF of F (X
αX−−→)G (X )→ colimG , which is the map l in the following diagram.

F (X ) G (X ) colimG

colimF

αx

l

We define colim(α) = l .
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Definition

Let M be a homotopical category and D be a small category. The homotopy colimit

functor (if it exists), is a left derived functor L colim : MD →M and the homotopy

limit functor (if it exists), is a right derived functor R lim : MD →M

Construction

( Diagonal functor) Let ∆ : M →MD be the functor, where for any object x ∈M ,

∆(x) is the constant diagram F (y) = x and F (f ) = idx for any x ∈ D and

f ∈ Mor(D).

Remark

colimit are left adjoints to diagonal functor. Hence it’s reasonable to pick left derived

functor of colimit functor to obtain homotopy colimit functor.
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Unfortunately, homotopy colimit and homotopy limit are not easily computed as we

want. But here is still a way:

Construction

(Model structure on MD) Let M is a model category and D be a small category.

1. The projective model structure on MD is defined as: weak equivalence and

fibrations defined point wise in M

2. The injective model structure on MD is defined as following: weak equivalence

and cofibrations defined point wise in M .
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Theorem

Let M is a model category and D be a small category.

• If the projective model structure on MD exists then the homotopy colimit

L colim : MD →M exists and can be computed by the colimit of a projective

cofibrant replacement of the origianl diagram.

• If the Injective model structure on MD exists then the homotopy limit

R colim : MD →M exists and can be computed by the limit of a injective fibrant

replacement of the origianl diagram.
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proof We only prove (1). Assume MD has projective model structure.

Claim: The functor colim : MD →M is left Quillen.

Accept the claim, the left derived functor L colim of left Quillen functor colim exists

and is given by colim ◦Q where Q is the cofibrant replacement in the projective model.

proof of the claim: colim : MD ⇆ M : ∆ is an adjunction, where ∆ is the diagonal

functor. To show colim is left Quillen, it’s equivalent to show ∆ is right Quillen.

(Which is more easier!)

It suffices to show ∆ preserves fibrations, trivial fibrations, fibrants.
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∆ : M MD

X F

Y G

f α

where F and G are functors with F (d) = x , F (f ) = idx ; G (d) = y , G (f ) = idy .

• [αd : F (d)→ G (d)] = [f : x → y ] (by definition) is a fibration. By definition of

projective model structure, α is fibration.

• Similarly one can show ∆ preserves weak equivalences.

• M has terminal object, and ∆ as a right adjoint preserves terminal object. For

any X ↠ ∗, we have ∆(X ) ↠ ∆(∗) shows ∆(X ) is fibrant.

Hence ∆ is right Quillen.
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Fact

The diagram consists of two cofibrations between cofibrant objects is projectively

cofibrant.

Corollary

For a pushout diagram Y
k←− X

l−→ Z , its homotopy pushout is computed by finding

Y ′ ↢ X ′ ↣ Z ′ where X ′, Y ′, Z ′ are cofibrant objects, besides, two diagram are

connected by weak equivalence, i.e., there is a diagram with verticle maps be weak

equivalences.
Y ′ X ′ Z ′

Y X Z

∼ ∼

k l

∼
or

Y ′ X ′ Z ′

Y X Z

∼ ∼ ∼

k l
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In practice, here is a general way to find homotopy pushout:

1. Find a cofibrant object weak equivalence to the middle object q : X ′ → X .

(Direction is important. X
∼−→ X ′ fails to have step 2)

2. Factor kq and lq by (C,F ∩W), we obtain:

Y ′ X ′ Z ′

Y X Z

∼ ∼ ∼

k l

∅↣ X ′ ↣ Y ′. So Y ′ is a cofibrant and so is Z ′.
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Compute the homotopy pushout of ∗ ← Sn−1 → ∗. Recall model category of Top:

• f : X → Y is a cofibration if f is a retract of a map f̄ : X → Y ′ such that Y ′ is

obtained from X by attaching cells.

• Initial object of Top is ∅
• All CW complexes are cofibrant objects

Remark

(All CW complexes are cofibrant objects) Let X be a CW complex. ∅ → X is a

retract of itself ∅ → X and X is obtained from ∅ by attaching cells since X is a CW

complex.
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Sn−1 Sn−1 Sn−1

Dn ∗ Dn

id id

id

This diagram shows Sn−1 → Dn is a cofibration.

Clearly Dn → ∗ is weak equivalence.

Dn and Sn−1 is CW complex, so they are cofibrant objects.
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There is a commutative diagram:

Dn Sn−1 Dn

∗ Sn−1 ∗

∼ id ∼
Hence, the homotopy pushout of ∗ ← Sn−1 → ∗ is the pushout of Dn ↢ Sn−1 ↣ Dn,

which is Sn.
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Thanks!
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