Energy bands and Higgs bundles

Zhou Fang December 2, 2024

Shenzhen Institute for Quantum Science and Engineering, Southern University of Science and Technology

Efficiency superconductors can be designed by controlling materials near singular points, where **energy bands** are gapless.

Studying **topology of energy bands** is significant because it is closely related to our daily life.

Efficiency superconductors can be designed by controlling materials near singular points, where **energy bands** are gapless.

Studying **topology of energy bands** is significant because it is closely related to our daily life.

Efficiency superconductors can be designed by controlling materials near singular points, where **energy bands** are gapless.

Studying **topology of energy bands** is significant because it is closely related to our daily life.

Efficiency superconductors can be designed by controlling materials near singular points, where **energy bands** are gapless.

Studying **topology of energy bands** is significant because it is closely related to our daily life.

Efficiency superconductors can be designed by controlling materials near singular points, where **energy bands** are gapless.

Studying **topology of energy bands** is significant because it is closely related to our daily life.

Efficiency superconductors can be designed by controlling materials near singular points, where **energy bands** are gapless.

Studying **topology of energy bands** is significant because it is closely related to our daily life.

What are energy bands?

Most crucial physical information of a physical system: energy and states

Zhou Fang

Energy bands and Higgs bundles

This system is described by **Hamiltonian**
$$H = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 3 \end{bmatrix}$$

- eigenvalues (possible energy): 1, 2, 3
- eigenvectors (possible states corresponding to energy):

$$: \begin{bmatrix} 1\\0\\0 \end{bmatrix}, \begin{bmatrix} 0\\1\\0 \end{bmatrix}, \begin{bmatrix} 0\\0\\1 \end{bmatrix}$$

Tuning a system \Leftrightarrow Parametrizing the Hamiltonian

e.g., parametrized by temperature T:

$$H(T) = \begin{bmatrix} a_{11}(T) & a_{12}(T) & a_{13}(T) \\ a_{21}(T) & a_{22}(T) & a_{23}(T) \\ a_{31}(T) & a_{32}(T) & a_{33}(T) \end{bmatrix}$$

We can draw the **energy band**:

T_1 is a singular point.

What is the topology of energy bands?

Summarize the content in one sentence: The topology of energy bands is the configuration of eigenvalues and eigenspaces.

Consider the matrix
$$H = \begin{bmatrix} f_3 & f_2 \\ -f_2 & -f_3 \end{bmatrix}$$
, f_3 , $f_2 \in \mathbb{R}$.

Let's see the configuration of eigenvalues and eigenspaces.

$$X_0 = \{(0,0)\}, \ X_1 = \{(f_3,f_3),(f_3,-f_3)|f_3\in \mathbb{R}\}, \ X_2 = \mathbb{R}^2$$

Zhou Fang

Energy bands and Higgs bundles

15 / 33

$$X_0 = \{(0,0)\}, X_1 = \{(f_3,f_3), (f_3,-f_3) | f_3 \in \mathbb{R}\}, X_2 = \mathbb{R}^2$$

•
$$X_0: \lambda_+ = \lambda_- = \lambda, \dim(E(\lambda)) = 2$$

•
$$X_1 - X_0$$
: $\lambda_+ = \lambda_- = \lambda$, $dim(E(\lambda)) = 1$

•
$$X_2 - X_1$$
: $\lambda_+ \neq \lambda_-$, $dim(E(\lambda_{\pm})) = 1$

It's a stratified space with each stratum characterizing different behavior of eigenvalues and eigenvectors.

Zhou Fang

Energy bands and Higgs bundles

16 / 33

More examples: the swallowtail

Consider configuration of eigenvalues & eigenspaces of

$$H = egin{bmatrix} -f_1 & -f_1 & -f_2 \ f_1 & f_1 + f_3 & -f_3 \ f_2 & -f_3 & f_2 + f_3 \end{bmatrix}$$

Singular points locally look like swallowtails.

Ref: Non-Hermitian swallowtail catastrophe revealing transitions among diverse topological singularities

Zhou Fang

Energy bands and Higgs bundles

Higgs bundles

Let S be a closed orientable surface of genus $g \ge 2$ and Σ be a Riemann surface structure on S.

Definition

A rank *n* **Higgs bundle** over Σ is a pair (E, ϕ) where *E* is a holomorphic vector bundle of rank *n* and $\phi \in H^0(\Sigma, End(E) \otimes K)$, called the **Higgs field**, where *K* is the cotangent bundle.

Equivalently, ϕ is a family of morphisms { $\phi_x \in EndE_x \otimes K_x | x \in \Sigma$ }. ϕ_x is a matrix of holomorphic one-form with eigenvalues valued in K.

Ref: Qiongling Li. An introduction to Higgs bundles via harmonic maps. Symmetry, Integrability and Geometry: Methods and applications, May 2019

Let S be a closed orientable surface of genus $g \ge 2$ and Σ be a Riemann surface structure on S.

Definition

A rank *n* **Higgs bundle** over Σ is a pair (E, ϕ) where *E* is a holomorphic vector bundle of rank *n* and $\phi \in H^0(\Sigma, End(E) \otimes K)$, called the **Higgs field**, where *K* is the cotangent bundle.

Equivalently, ϕ is a family of morphisms { $\phi_x \in EndE_x \otimes K_x | x \in \Sigma$ }. ϕ_x is a matrix of holomorphic one-form with eigenvalues valued in K.

Ref: Qiongling Li. An introduction to Higgs bundles via harmonic maps. Symmetry, Integrability and Geometry: Methods and applications, May 2019

Let S be a closed orientable surface of genus $g \ge 2$ and Σ be a Riemann surface structure on S.

Definition

A rank *n* **Higgs bundle** over Σ is a pair (E, ϕ) where *E* is a holomorphic vector bundle of rank *n* and $\phi \in H^0(\Sigma, End(E) \otimes K)$, called the **Higgs field**, where *K* is the cotangent bundle.

Equivalently, ϕ is a family of morphisms { $\phi_x \in EndE_x \otimes K_x | x \in \Sigma$ }. ϕ_x is a matrix of holomorphic one-form with eigenvalues valued in K.

Ref: Qiongling Li. An introduction to Higgs bundles via harmonic maps. Symmetry, Integrability and Geometry: Methods and applications, May 2019

At each point $x \in \Sigma$, we can "draw" its eigenvalues, and finally, we can obtain **a** graph of eigenvalues, denoted by $\tilde{\Sigma}$. $\tilde{\Sigma}$ is a branched cover over Σ .

 $L \to \tilde{\Sigma}$ is a line bundle: for $p \in \tilde{\Sigma}$, the fiber L_p is the eigenvector associated to eigenvalue p.

Recall that a linear transformation can split a vector space into a direct sum of eigenspaces. Hence, at a regular point b, $E_b = \bigoplus_i L_{p_i}$.

Ref:Hyperbolic band theory through Higgs bundles, Advanced in Mathematics, 409:108664, November 2022

We've known following Hopf bundles:

 $S^0 \hookrightarrow S^1 \xrightarrow{2} S^1$

- $S^1 \hookrightarrow S^3 \xrightarrow{\eta} S^2$
- $S^3 \hookrightarrow S^7 \xrightarrow{\mu} S^4$

These Hopf bundles are nontrivial elements in $\pi_1(S^1)$, $\pi_3(S^2)$, $\pi_7(S^4)$.

They also arise from normalised eigenbundles of 2×2 matrices.

Ref: Principal bundles, Hopf bundles and eigenbundles

We've known following Hopf bundles:

 $S^0 \hookrightarrow S^1 \xrightarrow{2} S^1$

 $S^1 \hookrightarrow S^3 \xrightarrow{\eta} S^2$

 $S^3 \hookrightarrow S^7 \xrightarrow{\mu} S^4$

These Hopf bundles are nontrivial elements in $\pi_1(S^1)$, $\pi_3(S^2)$, $\pi_7(S^4)$.

They also arise from normalised eigenbundles of 2×2 matrices.

Ref: Principal bundles, Hopf bundles and eigenbundles

$S^0 \hookrightarrow S^1 \xrightarrow{2} S^1$ (equivalent to $O(1) \hookrightarrow SO(2) \to SO(2)/O(1)$) 2-band Hermitian Hamiltonian

 $S^0 \hookrightarrow S^1 \xrightarrow{2} S^1$ (equivalent to $O(1) \hookrightarrow SO(2) \to SO(2)/O(1)$) 2-band Hermitian Hamiltonian

 \downarrow generalize to

O(1) imes O(1) o SO(3) o SO(3) / (O(1) imes O(1)) 3-band Hermitian Hamiltonian

 $S^0 \hookrightarrow S^1 \xrightarrow{2} S^1$ (equivalent to $O(1) \hookrightarrow SO(2) \to SO(2)/O(1)$) 2-band Hermitian Hamiltonian

 \downarrow generalize to

 $O(1) \times O(1) \rightarrow SO(3) \rightarrow SO(3)/(O(1) \times O(1))$ 3-band Hermitian Hamiltonian

 \downarrow generalize to

? 3-band pseudo-Hermitian Hamiltonian

Hopf bundle $S^0 \hookrightarrow S^1 \xrightarrow{2} S^1$ is a special Higgs bundle.

Classifying

Question: How to classify Higgs bundles induced by parametrized Hamiltonians?

Compute loops and find relations.

Question: How to classify **Higgs bundles induced by parametrized Hamiltonians**? **Compute loops and find relations.**

Consider singular points of the matrix $H_1 = \begin{bmatrix} 1 & f_1 & f_2 \\ -f_1 & -1 & f_3 \\ -f_2 & f_3 & -1 \end{bmatrix}$

Zhou Fang

Energy bands and Higgs bundles

Thanks!