Contents

1	Kervaire Invariant	2
	1.1 Arf Invariant	2
	1.2 Kervaire Invariant	4
	Construction in Dimension 30 2.1 Construction of extended power	

John Jones' construction of manifold in dimension 30 with Kervaire invariant one

Zhou Fang*

Notation:

- $\mathbb{Z}_2 := \mathbb{Z}/2\mathbb{Z}$
- Σ_t : the group of permutations of a set with t elements
- Denote $\Sigma = {\sigma, 1}$, where σ is the nontrivial element.
- Let τ_Y be the tangent bundle of a manifold Y
- Let $L = \{(l, z) \mid l \in \mathbb{RP}^{\infty}, z \in l\}$. Let $H : L \to \mathbb{RP}^{\infty}$ denote the tautological/canonical/Hopf line bundle over \mathbb{RP}^{∞} . The restriction over \mathbb{RP}^n is denoted by H_n
- $tot(\cdot)$ means the total space of a bundle
- Prin(X,G) denotes the set of principal G-bundles over X
- The important constructions are colored in blue

1 Kervaire Invariant

1.1 Arf Invariant

This section is a summary of [5].

Naively, a quadratic form is a linear k-function over k-vector space $q: V \to k$ for a given field k such that $q(tx) = t^2 q(x)$ for any $t \in k$ and $x \in V$.

Problem 1.1. When $k = \mathbb{Z}_2$, the condition should be q(0x) = 0 and q(1x) = q(x) for all $x \in V$, which is just q(0) = 0. This condition appears too weak, and we must seek a new definition for the quadratic form.

This problem leads to the definition of a quadratic form on a \mathbb{Z}_2 -vector space.

^{*12333069@}mail.sustech.edu.cn

Definition 1.2. Let V be a \mathbb{Z}_2 -vector space. A function $q:V\to\mathbb{Z}_2$ is said to be a quadratic form if $I:V\times V\to\mathbb{Z}_2$ defined by I(x,y)=q(x+y)-q(x)-q(y) is a bilinear map. In this case, we call q a quadratic refinement of the bilinear form I, and I is the associated bilinear form of q. We say this quadratic form is nondegenerate if the associated bilinear form I is nondegenerate, i.e., $V\to Hom(V,\mathbb{Z}_2), v\mapsto I(v,-)$ is an isomorphism.

Remark 1.3. The quadratic refinement of the bilinear form is not unique. An example is in **Construction 1.9**. \Box

Definition 1.4. Let V be a \mathbb{Z}_2 -vector space and I be a bilinear form on V with quadratic refinement $q: V \to \mathbb{Z}_2$. If V has a basis $\{a_i, b_i | i = 1, 2, \dots s\}$ fulfilling $I(a_i, a_j) = I(b_i, b_j) = 0$ and $I(a_i, b_j) = I(a_j, b_i) = \delta_{ij}$, then we call this basis a symplectic basis for the bilinear form I.

Fact 1.5. If a \mathbb{Z}_2 -vector space admits a nondegenerate quadratic form $q:V\to\mathbb{Z}_2$, then a symplectic basis exists. In particular, dim V is even.

Definition 1.6. Let $q:V\to\mathbb{Z}_2$ be a nondegenerate quadratic form on \mathbb{Z}_2 -vector space V. By **Fact 1.5**, there exists a symplectic basis $\{a_i,b_i|i=1,2,\cdots,s\}$ for the associated bilinear form I. The Arf-invariant of q is defined as

$$Arf(q) = \sum_{i=1}^{s} q(a_i)q(b_i).$$

For the remaining part, let us focus on what the Arf invariant characterizes.

Definition 1.7. Let $q, q': V \to \mathbb{Z}_2$ be two quadratic forms. We say that q is equivalent to q', denoted by $q \sim q'$, if there exists an automorphism $f: V \to V$ such that $q \circ f = q'$.

Clearly, this defines an equivalence relation. The following fact shows that the Arf invariant is invariant under this equivalence relation.

Fact 1.8. The Arf invariant is a function on the equivalence classes of quadratic forms.

Construction 1.9. (For a bilinear map, its quadratic refinement is not unique.) Let $W = \mathbb{Z}_2 a_1 \oplus \mathbb{Z}_2 b_1$ be a \mathbb{Z}_2 -vector space with basis $\{a_1, b_1\}$. A bilinear map on $V \times V$ is determined by

$$I(a_1, a_1), I(a_1, b_1), I(b_1, a_1), I(b_1, b_1).$$

A bilinear form admitting a quadratic refinement should satisfy

$$I(a_1, a_1) = I(b_1, b_1) = 0,$$
 $I(a_1, b_1) = I(b_1, a_1).$

If we further require that this bilinear form be nondegenerate, then the only possibility is

$$I(a_1, a_1) = I(b_1, b_1) = 0,$$
 $I(a_1, b_1) = I(b_1, a_1) = 1.$

As a set, $W = \{a_1, b_1, a_1 + b_1, 0\}$. Therefore, a quadratic refinement of q is determined by the values of $q(a_1)$, $q(b_1)$, and $q(a_1 + b_1)$.

Define two quadratic forms as follows:

$$q_0(a_1) = q_0(b_1) = 0, q_0(a_1 + b_1) = 1$$

and

$$q_1(a_1) = q_1(b_1) = q_1(a_1 + b_1) = 1$$

We can easily check that both are quadratic refinements of I. Moreover, q_0 is not equivalent to q_1 , since q_0 sends most elements to 0 while q_1 sends most elements to 1. An automorphism on a vector space does not alter the proportions of the values. Therefore, equivalent quadratic forms map elements to 0 and 1 in the same ratio.

Construction 1.10. Let U be a \mathbb{Z}_2 -vector space that admits a nondegenerate quadratic form, and dim $U=2m,\ m\in\mathbb{N}$. By Fact 1.5, U has a symplectic basis

$$\{a_i, b_i \mid i = 1, 2, \dots, m\}$$

for the associated bilinear form I.

Then

$$U = (\mathbb{Z}_2 a_1 \oplus \mathbb{Z}_2 b_1) \oplus (\mathbb{Z}_2 a_2 \oplus \mathbb{Z}_2 b_2) \oplus \cdots \oplus (\mathbb{Z}_2 a_m \oplus \mathbb{Z}_2 b_m) = W_1 \oplus W_2 \oplus \cdots \oplus W_m,$$

where $W_i = \mathbb{Z}_2 a_i \oplus \mathbb{Z}_2 b_i$. Each W_i is a 2-dimensional vector space, so W_i has two quadratic forms q_0, q_1 in **Construction 1.9**.

We have quadratic forms:

$$mq_0 := q_0 \oplus q_0 \oplus \cdots \oplus q_0 : U = W_1 \oplus W_2 \oplus \cdots \oplus W_m \to \mathbb{Z}_2,$$

and

$$q_1 + (m-1)q_0 := q_1 \oplus q_0 \oplus \cdots \oplus q_0 : W_1 \oplus \cdots \oplus W_m \to \mathbb{Z}_2.$$

These two quadratic forms are the standard forms for nondegenerate quadratic forms. $\hfill\Box$

Fact 1.11. (Classification by the Arf invariant) The Arf invariant classifies all nondegenerate quadratic forms. More explicitly,

 $Arf(q) = 0 \iff q \text{ maps the majority of elements to } 0 \iff q \sim mq_0,$

$$Arf(q) = 1 \iff q \text{ maps the majority of elements to } 1 \iff q \sim q_1 + (m-1)q_0.$$

1.2 Kervaire Invariant

In this section, $H^i(M) := H^i(M, \mathbb{Z})$.

Let (M, F) be a framed manifold. Using framing, we can define a quadratic form $\phi: H^n(M; \mathbb{Z}_2) \to \mathbb{Z}_2$. Let us only define the Kervaire invariant for a special case. The reference here is [4].

Let M^{10} be a closed triangulable 4-connected manifold. Let $\Omega := \Omega S^6$ be the loop space of S^6 .

Fact 1.12. $H^5(\Omega S^6) = \mathbb{Z}e_1$, $H^{10}(\Omega S^6) = \mathbb{Z}e_2$. Let $\pi : \Omega \times \Omega \to \Omega$ be the product of loops, then $\pi^*(e_1) = e_1 \otimes 1 + 1 \otimes e_1$ and $\pi^*(e_2) = e_2 \otimes 1 + 1 \otimes e_2 + e_1 \otimes e_1$.

Fact 1.13. Let X be any element in $H^5(M)$. There exists a map $f: M \to \Omega$ such that $f^*(e_1) = X$.

Construction 1.14. Let $X \in H^5(M)$, then there exists a map $f_X : M \to \Omega$ such that $f_X^*(e_1) = X$. Let $u_2 \in H^{10}(\Omega; \mathbb{Z}_2)$ be the reduction modulo 2 of $e_2 \in H^{10}(\Omega)$ and [M] be the generator of $H_{10}(M; \mathbb{Z})$. Then we define a map $\phi_0 : H^5(M) \to \mathbb{Z}_2$ by $\phi_0(X) = f_X^*(u_2)[M]$.

Remark 1.15. $\phi_0(X)$ does not depend on the choice of $f_X: M \to \Omega$.

Fact 1.16. $\phi_0(X+Y) = \phi_0(X) + \phi_0(Y) + X \cdot Y$ for $X, Y \in H^5(M)$. Then ϕ_0 induces a map $\phi: H^5(M; \mathbb{Z}_2) \to \mathbb{Z}_2$ also satisfying $\phi(x+y) = \phi(x) + \phi(y) + x \cdot y$ for $x, y \in H^5(M; \mathbb{Z}_2)$.

Since $I(x,y) = \phi(x+y) - \phi(x) - \phi(y) = x \cdot y$ is bilinear, so ϕ is a quadratic form.

Definition 1.17. Define the Kervaire invariant by $K(M, F) := Arf(\phi)$.

Remark 1.18. K(M,F)=1 if and only if ϕ sends the majority of elements of $H^5(M)$ to $1 \in \mathbb{Z}_2$.

2 Construction in Dimension 30

2.1 Construction of extended power

If a framed manifold M has Kervaire invariant one, then dim M=2,6,14,30,62,126.

Example 2.1. $S^1 \times S^1$, $S^3 \times S^3$, $S^7 \times S^7$ can be framed to have Kervaire invariant one.

This section introduces a construction in dimension 30 by [3]. The construction is of the form known as an extended power.

Definition 2.2. Let Y be a manifold with $G \subset \Sigma_t$ acting on it freely. Let N be a topological space and G acts on N^t by permutation. Then we can construct

$$Y_G(N) := Y \times_G N^t$$
,

which is called the extended power.

Remark 2.3. Here is an advantage of considering extended power. That is, the dimension of extended power is computable:

$$\dim(Y \times_G N^t) = \dim Y + t \dim N.$$

G acts on Y and N^t freely. So G acts freely on $Y \times N^t$. Review Proposition 1.40 in [2], condition (\star) automatically holds for the finite group G. Hence,

 $Y \times N^t \to Y \times_G N^t$ is a normal covering space. By the property of covering space,

$$\dim(Y \times_G N^t) = \dim(Y \times N^t) = \dim Y + t \dim N.$$

Fact 2.4. Let G and H be any two Lie groups. $EH \times_H BG$ is a model for $B(G \rtimes H)$.

Construction 2.5. Let $\overline{X} := \mathbb{RP}^2 \# T^2$. Let $G = \Sigma_2 \wr \Sigma_2 = (\Sigma_2 \times \Sigma_2) \rtimes \Sigma_2 \subset \Sigma_4$.

Let $a: \mathbb{RP}^2 \subset B\Sigma_2 \stackrel{\iota}{\hookrightarrow} B\Sigma_2 \times B\Sigma_2 \stackrel{j}{\rightarrow} E\Sigma_2 \times_{\Sigma_2} (B\Sigma_2 \times B\Sigma_2) = BG$, where j is inclusion. The last equation holds by **Fact 2.4**.

Let $b: T^2 = S^1 \times S^1 \hookrightarrow B\Sigma_2 \times B\Sigma_2 \xrightarrow{1 \times_{\Sigma_2} \Delta} E\Sigma_2 \times_{\Sigma_2} (B\Sigma_2 \times B\Sigma_2) =: BG$. Here $1 \times_{\Sigma_2} \Delta$ is constructed as following:

- Define $E\Sigma_2 \times B\Sigma_2 \xrightarrow{1 \times \Delta} E\Sigma_2 \times (B\Sigma_2 \times B\Sigma_2)$. Both sides have a Σ_2 -action as follows. For $(a,b) \in E\Sigma_2 \times B\Sigma_2$, $(c,(d,e)) \in E\Sigma_2 \times (B\Sigma_2 \times B\Sigma_2)$, we have $\sigma \cdot (a,b) = (\sigma \cdot a,b)$ and $\sigma(c,(d,e)) = (\sigma \cdot c,(e,d))$.
- The following diagram shows $1 \times \Delta$ is Σ_2 -equivalence:

$$(a,b) \longmapsto (a,(b,b))$$

$$\downarrow \qquad \qquad \downarrow$$

$$(\sigma \cdot a,b) \longmapsto (\sigma \cdot a,(b,b))$$

$$E\Sigma_2 \times B\Sigma_2 \longrightarrow E\Sigma_2 \times (B\Sigma_2 \times B\Sigma_2)$$

$$\sigma \downarrow \qquad \qquad \qquad \downarrow \sigma \cdot$$

$$E\Sigma_2 \times B\Sigma_2 \longrightarrow E\Sigma_2 \times (B\Sigma_2 \times B\Sigma_2)$$

So $1 \times \Delta$ is Σ_2 -equivalence. Hence, we can obtain a map

$$1 \times_{\Sigma_2} \Delta : (E\Sigma_2 \times B\Sigma_2)/\Sigma_2 \to (E\Sigma_2 \times (B\Sigma_2 \times B\Sigma_2))/\Sigma_2$$

which is

$$1 \times_{\Sigma_2} \Delta : B\Sigma_2 \times B\Sigma_2 \to E\Sigma_2 \times_{\Sigma_2} (B\Sigma_2 \times B\Sigma_2).$$

Then we can construct $c: \overline{X} = \mathbb{RP}^2 \# T^2 \xrightarrow{\text{contraction}} \mathbb{RP}^2 \vee T^2 \xrightarrow{a \vee b} BG$. Let $X \to \overline{X}$ be the principal G-bundle classified by c.

We consider the extended power $X_G(S^7)$. Note that

$$\dim X_G(S^7) = \dim X + 4\dim S^7 = 2 + 4 \times 7 = 30$$

by Remark2.10.

Remark 2.6. Here are some reasons for choosing such an \overline{X} . One reason is that $H^*(\overline{X})$ is easily computed. Besides, the goal of finding $\overline{X} \to BG$ can be divided into constructing $\mathbb{RP}^2 \to BG$ and $T^2 \to BG$.

Show $X_G(S^7)$ is framed 2.2

Let $\xi: X_G(\mathbb{R}) \to \overline{X}$ be the 4-dimensional bundle. Then by **Theorem A** of [3], to show that $X_G(S^7)$ is framed is equivalent to showing that $\tau \overline{X} + 7\xi$ is stably trivial. Since all stable bundles over a surface are classified by their Stiefel-Whitney classes, it suffices to show

$$w(\tau \overline{X} + 7\xi) = w(\tau \overline{X})w(\xi)^7 = 1.$$

 $H^1(\overline{X}) = H^1(\mathbb{RP}^2) + H^1(T^2) = \mathbb{Z}_2 u + \mathbb{Z}_2 x_1 + \mathbb{Z}_2 x_2$, where u is the generator coming from $H^1(\mathbb{RP}^2)$, and x_1, x_2 are the generators coming from $H^1(T^2)$. $H^2(\overline{X}) = \mathbb{Z}_2 u^2$. Note that $u^2 = x_1 x_2 \neq 0$, $x_1^2 = x_2^2 = u x_1 = u x_2 = u^3 = 0$. By $[1] w(\tau \overline{X}) = w(\tau \mathbb{RP}^2 \# T^2) = w(\tau \mathbb{RP}^2) + w(\tau T^2) - 1 = 1 + u + u^2 + 1 + u^2 + 1 + u + u^2 + 1 + u^2 +$

 $1 + u + u^2$.

Let $r: G \to O(4)$ be the permutation representation. Let ρ be the bundle classified by Br.

Remark 2.7. Clearly, a normal bundle of T^2 is trivial. So $w(\nu T^2) = 1$. By $w(\tau T^2 \oplus \nu T^2) = w(\tau T^2)w(\nu T^2) = 1$, we get $w(\tau T^2) = 1$. The computation of $w(\tau \mathbb{RP}^2)$ is more complicated. Note that $\tau \mathbb{RP}^2 \oplus \varepsilon^1 = \oplus^3 H_2$ where H_2 is the tautological bundle over \mathbb{RP}^2 . So $w(\tau \mathbb{RP}^2) = w(H_2)^3 = (1+u)^3 = 1+u+u^2$. For more details, see [5].

Claim 2.8. $\xi = c^* \rho$.

 ρ is the bundle classified by Br, so by Remark 2.10, $\rho: EG \times_{G,r} O(4) \rightarrow$ BG. Then $c^*\rho = X \times_{G,r} O(4) \to X$ by **Remark 2.11**, which is a principal O(4)bundle. There exists a corresponding O(4)-bundle with fiber \mathbb{R}^4 , which has total space $(X \times_{G,r} O(4)) \times_{O(4)} \mathbb{R}^4 = X \times_{G,r} (O(4) \times_{O(4)} \mathbb{R}^4) = X \times_{G,r} \mathbb{R}^4 = X_G(\mathbb{R}).$ Hence $c^*\rho: X_G(\mathbb{R}) \to X$ is ξ .

Remark 2.9. Let $p \in P$, $g \in G$, $h \in H$. For $\theta : H \to G$, we can define the balanced product $P \times_{H,\theta} G := P \times G / \sim$, where $(ph,g) \sim (p,hg)$. Equivalently, $P \times_{H,\theta} G = (P \times G)/H$, where $h(p,g) = (ph^{-1},hg)$. Balanced product satisfies associativity and $W \times_G G \simeq G$ for any group G and G-space W.

Remark 2.10. Let us consider a more general question: Let H,G be any groups, X be any topological space. Given a group homomorphism $\theta: H \to G$, what's $B\theta$? Here provides a construction of the map $B\theta$ (and this construction works).

Goal: construct an element in Hom(BH, BG). By Yoneda lemma, we need to construct an element in Hom([-,BH],[-,BG]), i.e., we need to construct $\phi_X: [X,BH] \to [X,BG]$ for any X. By isomorphisms $Prin(X,H) \simeq [X,BH]$ and $Prin(X,G) \simeq [X,BG]$, we need to construct the map induced by $\phi, \bar{\phi}_X$: $Prin(X, H) \to Prin(X, G)$. Given a principal H-bundle $P \to X$, we want to construct a principal G-bundle, using data $P \to X$ and $\theta: H \to G$. Note that $\theta: H \to G$ makes H acting left on G. So we can form an H-bundle with fiber $G: P \times_{H,\theta} G \to X$. Clearly we can view $[P \times_{H,\theta} G \to X]$ as a G-bundle with G action on fiber G by multiplication. So $[P \times_{H,\theta} G \to X] \in B(X,G,G,m_G) =: Prin(X,G)$.

By Yoneda lemma, $\operatorname{Hom}([-,BH],[-,BG]) \to \operatorname{Hom}(BH,BG)$ defined by $\Psi \mapsto \Psi_{BH}(\operatorname{id})$ is an isomorphism. Let $\Psi = \phi$ and define $B\theta := \phi_{BH}(\operatorname{id})$, the image of ϕ under Yoneda map. Since $\overline{\phi}_X$ is induced by ϕ_X , we have commutative diagram:

$$\begin{array}{cccc} [BH,BH] & \xrightarrow{\phi_{BH}} & [BH,BG] \\ & & & \downarrow \simeq & & \downarrow \simeq \\ Prin(BH,H) & \xrightarrow{\overline{\phi}_{BH}} & Prin(BH,G) \\ & & id & \longleftarrow & \phi_{BH}(id) =: B\theta \\ & & \downarrow & & \downarrow \\ & & \downarrow & & \downarrow \\ id^*EH = [EH \to BH] & \longmapsto [EH \times_{H,\theta} G \to BH] \end{array}$$

From this diagram, even we do not know what $B\theta$ is, we can know $B\theta$ classifies principal G-bundle $EH \times_{H,\theta} G \to BH$.

Remark 2.11. Consider this problem: Let G be any group, X be any topological space, and $\pi: E \to E/G$ be a bundle. The pullback of π along $c: X \to E/G$ is M. Let L be the pullback of $E \times_G F \to E/G$ along c. Then what is the relationship between L and M?

By construction,

$$L = X \times_{E/G} (E \times_G F)$$

= $\{(x, e, f) \mid x \in X, e \in E, f \in F, c(x) = [e]_G\}/(x, e, f) \sim (x, eg, g^{-1}f),$

for any $g \in G$.

$$M \times_G F = (X \times_{E/G} E) \times_G F$$

= $\{(x, e, f) \mid x \in X, e \in E, f \in F, c(x) = [e]_G\}/(x, e, f) \sim (x, eg, g^{-1}f)$

for any $g \in G$.

So
$$L = M \times_G F$$
.

Since $\xi = c^* \rho$, we need to compute $w(c^* \rho)$. To compute $w(c^* \rho)$, we need to compute $a^* \rho$ and $b^* \rho$.

 $G = \Sigma_2 \wr \Sigma_2 \subset \Sigma_4$ is the subgroup generated by (12), (34), (13)(24) by **Remark 2.12**. Let $i_1 : \Sigma_2 \times \Sigma_2 \to G$ be the inclusion of the subgroup generated by (12) and (34). Let $i_2 : \Sigma_2 \times \Sigma_2 \to G$ be the inclusion of the subgroup generated by (12)(34) and (13)(24). Let $s : \Sigma_2 \to O(2)$ be a permutation representation.

Remark 2.12. $G = (\Sigma_2 \times \Sigma_2) \rtimes \Sigma_2$, where the multiplication is

$$((h_0, h_1), x) \cdot ((l_0, l_1), y) = ((y \cdot (h_0, h_1))(l_0, l_1), xy)$$

and

$$\begin{cases} \sigma(h_0, h_1) &= (h_1, h_0), \\ 1(h_0, h_1) &= (h_0, h_1) \end{cases}$$

G is isomorphic to the subgroup in Σ_4 generated by (12), (34), (13)(24). The correspondence is as follows:

((1,1),1)	1
$((\sigma, 1), 1)$	(12)
$((1, \sigma), 1)$	(34)
$((\sigma,\sigma),1)$	(12)(34)
$((1,1), \sigma)$	(13)(24)
$((\sigma,1),\sigma)$	(1423)
$((1,\sigma),\sigma)$	(1324)
$((\sigma,\sigma),\sigma)$	(14)(23)

Table 1: Correspondence

Claim 2.13. Bs classified the bundle $H + \varepsilon^1$.

By **Remark2.10**, Bs induces map classifies the principal O(2)-bundle $E\Sigma_2 \times_{\Sigma_2}$ $O(2) \to B\Sigma_2$. This principal O(2)-bundle corresponds to an element in $B(B\Sigma_2, O(2), \mathbb{R}^2, \rho)$, where $\rho: O(2) \times \mathbb{R}^2 \to \mathbb{R}^2$, $(M, x) \mapsto M \cdot x$. The associated O(2)-bundle with fiber \mathbb{R}^2 is $E\Sigma_2 \times_{\Sigma_2} O(2) \times_{O(2)} \mathbb{R}^2 = E\Sigma_2 \times_{\Sigma_2} \mathbb{R}^2 \to B\Sigma_2$. Write $u = [\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}] \in \mathbb{R}^2$ and $v = [\frac{1}{\sqrt{2}}, -\frac{1}{\sqrt{2}}] \in \mathbb{R}^2$. We observe that $\sigma u = u$

and $\sigma v = -v$. (Here u and v are more symmetric than a standard basis.)

Check that the total spaces are the same:

- $E\Sigma_2 \times_{\Sigma_2} \mathbb{R}^2 = \{(z, xu + yv) \mid z \in E\Sigma_2 = S^{\infty}, x, y \in \mathbb{R}\}/\sim$, where $(z, xu + yv) \sim (z\sigma^{-1}, \sigma(xu + yv)) = (-z, xu yv)$. Let $w = z \cdot y$ and x = t, then $E\Sigma_2 \times_{\Sigma_2} \mathbb{R}^2 = \{(w, t) \mid w \in \mathbb{R}^{\infty}, t \in \mathbb{R}\}$.
- $tot(H + \varepsilon^1) = \{((l, w), t) \mid l \in \mathbb{RP}^{\infty}, w \in l \subset \mathbb{R}^{\infty}, t \in \mathbb{R}\} = \{(w, t) \mid w \in \mathbb{R}^{\infty}, t \in \mathbb{R}\} = E\Sigma_2 \times_{\Sigma_2} \mathbb{R}^2.$

Check that the bundle maps are the same:

- $H + \varepsilon^1 : \text{tot}(H + \varepsilon^1) \to \mathbb{RP}^{\infty}$ is defined by $(w, t) \mapsto [w]$, where [w] denotes the line w lies in.
- $E\Sigma_2 \times_{\Sigma_2} \mathbb{R}^2 \to B\Sigma_2$ is defined by $(z \cdot y, x) \mapsto [z] = [z \cdot y]$, which is

Therefore, the two bundles are exactly the same.

Claim 2.14. $ri_1 = s \times s$.

 $\Sigma_2 \times \Sigma_2 \xrightarrow{s \times s} O(2) \times O(2) \subset O(4)$ is defined by

$$(\sigma,0)\mapsto\begin{bmatrix} &1&&\\1&&&\\&&1&\\&&&1\end{bmatrix}, \qquad \qquad (0,\sigma)\mapsto\begin{bmatrix} 1&&&\\&1&&\\&&&1\end{bmatrix}.$$

and $\Sigma_2 \times \Sigma_2 \xrightarrow{i_1} G \xrightarrow{r} O(4)$ is defined by

$$(\sigma,0) \mapsto (12) \mapsto \begin{bmatrix} & 1 & & \\ 1 & & & \\ & & 1 & \\ & & & 1 \end{bmatrix}, \qquad (0,\sigma) \mapsto (34) \mapsto \begin{bmatrix} 1 & & & \\ & 1 & & \\ & & & 1 \end{bmatrix}.$$

So $s \times s = ri_1$.

Claim 2.15. $s \otimes s = ri_2$.

 $\Sigma_2 \times \Sigma_2 \xrightarrow{i_2} G \xrightarrow{r} O(4)$ is defined by

$$(\sigma,1) \mapsto (12)(34) \mapsto \begin{bmatrix} 1 & & & \\ 1 & & & \\ & & 1 \end{bmatrix}, (1,\sigma) \mapsto (13)(24) \mapsto \begin{bmatrix} & & 1 & \\ & & & 1 \\ 1 & & & \end{bmatrix}.$$

Since $s: \Sigma_2 \to O(2)$ is defined by $\sigma \mapsto \begin{bmatrix} 1 \\ 1 \end{bmatrix}, 1 \mapsto \begin{bmatrix} 1 \\ 1 \end{bmatrix}$, then $s \otimes s: \Sigma_2 \otimes \Sigma_2 \to O(2) \otimes O(2)$ satisfies

$$s(\sigma \otimes 1) = \sigma \otimes s1 = \begin{bmatrix} & 1 \\ 1 & \end{bmatrix} \otimes \begin{bmatrix} 1 & & \\ & 1 \end{bmatrix} = \begin{bmatrix} & 1 & & \\ 1 & & & \\ & & 1 \end{bmatrix},$$
$$s(1 \otimes \sigma) = s1 \otimes s\sigma = \begin{bmatrix} 1 & & \\ & & 1 \end{bmatrix} \otimes \begin{bmatrix} & 1 \\ 1 & & \end{bmatrix} = \begin{bmatrix} & & 1 & \\ & & & 1 \\ & & & 1 \end{bmatrix}.$$

So $s \otimes s = ri_2$.

Claim 2.16. $j = Bi_1; 1 \times_{\Sigma_2} \Delta = Bi_2.$

By Remark 2.12 i_1, i_2 are actually:

$$i_1: \Sigma_2 \times \Sigma_2 \to (\Sigma_2 \times \Sigma_2) \rtimes \Sigma_2, \quad (\sigma, 1) \mapsto ((\sigma, 1), 1), \ (1, \sigma) \mapsto ((1, \sigma), 1),$$
$$i_2: \Sigma_2 \times \Sigma_2 \to (\Sigma_2 \times \Sigma_2) \rtimes \Sigma_2, \quad (\sigma, 1) \mapsto ((\sigma, \sigma), 1), \ (1, \sigma) \mapsto ((1, 1), \sigma).$$

So i_1 can also be written as $\Sigma_2 \times \Sigma_2 \cong (\Sigma_2 \times \Sigma_2) \rtimes 1 \hookrightarrow (\Sigma_2 \times \Sigma_2) \rtimes \Sigma_2$. Apply functor B and use **Fact 2.4**, we obtain

$$B(\Sigma_2 \times \Sigma_2) \stackrel{\simeq}{\longrightarrow} B(\Sigma_2 \times \Sigma_2) \times_{\{1\}} E_{\{1\}} \longrightarrow B(\Sigma_2 \times \Sigma_2) \times_{\Sigma_2} E\Sigma_2.$$

Then $Bi_1 = j$.

Consider $\Sigma_2 \times \Sigma_2 \xrightarrow{\Delta \rtimes 1} (\Sigma_2 \times \Sigma_2) \rtimes \Sigma_2$ defined by $(a, b) \mapsto ((a, a), b)$, which is a group homomorphism since $b \cdot (a, a) = (a, a)$ for any $b \in \Sigma_2$. We observe that $i_2 = \Delta \rtimes 1$.

Apply functor B and use **Fact 2.4**, we obtain

$$B\Sigma_2 \times B\Sigma_2 \xrightarrow{\Delta \times_{\Sigma_2} 1} B\Sigma_2 \times B\Sigma_2 \times_{\Sigma_2} E\Sigma_2$$

Remark 2.17. We use G being a subgroup of Σ_4 (so we have group representation) to prove $ri_1 = s \times s$ and $ri_2 = s \otimes s$. We use $G = \Sigma_2 \wr \Sigma_2$ (so $BG = E\Sigma_2 \times_{\Sigma_2} (B\Sigma_2 \times B\Sigma_2)$) in computing $j = Bi_1, 1 \times_{\Sigma_2} \Delta = Bi_2$.

Consider the commutative diagram:

$$tot(j^*\rho) \longrightarrow tot(\rho) \longrightarrow EO(4)$$

$$j^*\rho \downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$B(\Sigma_2 \times \Sigma_2) \xrightarrow{Bi_1=j} BG \xrightarrow{Br} BO(4)$$

$$B(ri_1)=B(s\times s)=Bs\times Bs$$

So by Claim 2.13, $j^*\rho = (H + \varepsilon^1) \times (H + \varepsilon^1)$.

Remark 2.18. Consider a more general problem: Let $A \subset B_1$, $\pi_1 : E_1 \to B_1$, $\pi_2 : E_2 \to B_2$ be two vector bundles and $E_2 \to B_2$ has rank n. Then we have pullback:

$$E_1|_A \times \epsilon^n \longrightarrow E_1 \times E_2$$

$$\downarrow \qquad \qquad \downarrow_{\pi_1 \times \pi_2}$$

$$A \simeq A \times \{pt\} \longrightarrow B_1 \times B_2$$

By Remark 2.18, the bundle over \mathbb{RP}^2 is $(H+\varepsilon^1)|_{\mathbb{RP}^2}+\varepsilon^2=H_2+\varepsilon^1+\varepsilon^2=H_2+\varepsilon^3$, i.e., $a^*\rho=H_2+\varepsilon^3$.

Consider a commutative diagram:

$$tot(Bi_2^*\rho) \longrightarrow tot(\rho) \longrightarrow EO(4)$$

$$Bi_2^*\rho \downarrow \qquad \qquad \rho \downarrow \qquad \qquad \downarrow$$

$$B(\Sigma_2 \otimes \Sigma_2) \xrightarrow{Bi_2} BG \xrightarrow{Br} BO(4)$$

So
$$Bi_2^*\rho = (H + \varepsilon^1) \otimes (H + \varepsilon^1)$$
. Similarly as **Remark 2.18**, $b^*\rho = (H_1 + \varepsilon) \otimes (H_1 + \varepsilon) = H_1 \otimes H_1 + H_1 \otimes \varepsilon^1 + \varepsilon^1 \otimes H_1 + \varepsilon^1 \otimes \varepsilon^1$.

Remark 2.19. Here is a commutative diagram that helps readers understand relations.

$$(H_1 + \epsilon^1) \otimes (H_1 + \epsilon^1) \longrightarrow (H + \epsilon^1) \otimes (H + \epsilon^1) \longrightarrow EO(4)$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$S^1 \times S^1 = \mathbb{RP}^1 \times \mathbb{RP}^1 \longrightarrow B(\Sigma_2 \otimes \Sigma_2) \xrightarrow{Bs \otimes s} BO(4)$$

Claim 2.20. $w(H_1) = 1 + x$.

Since H_1 is a line bundle, we only need to compute $w_1(H_1)$. Note that $H^*(\mathbb{RP}^1) = \mathbb{Z}_2[x]/x^2$, $H^*(\mathbb{RP}^\infty) = \mathbb{Z}_2[x]$. Then $\iota : \mathbb{RP}^1 \to \mathbb{RP}^\infty$ induces $\iota^* :$ $H^*(\mathbb{RP}^{\infty}) \to H^*(\mathbb{RP}^1)$. By axiom of Stiefel-Whitney class, $w_1(H) \neq 0$, so $w_1(H) = x$. Then $w_1(\iota^*H) = \iota^*(w_1(H)) = \iota^*x = x \in H^1(\mathbb{RP}^1)$. So $w(H_1) = \iota^*x = x \in H^1(\mathbb{RP}^1)$. 1 + x.

Then we can compute:

$$w(a^*\rho) = w(H_2)w(\varepsilon^3) = w(H_2) = 1 + u,$$

$$w(b^*\rho) = w(H_1 \otimes H_1)w(H_1 \otimes \varepsilon^1)w(\varepsilon^1 \otimes H_1)w(\varepsilon^1 \otimes \varepsilon^1).$$

Since they are all line bundles, we only need to compute the first Stiefel-Whitney class.

Fact 2.21. Let L_1, L_2 be real line bundles over a paracompact space B. Then $w_1(L_1 \otimes L_2) = w_1(L_1) + w_1(L_2).$

Hence,

$$w_1(H_1 \otimes H_1) = w_1(H_1) + w_1(H_1) = x_1 + x_2,$$

$$w_1(H_1 \otimes \varepsilon^1) = x_1 + 0,$$

$$w(\varepsilon^1 \otimes H_1) = 0 + x_2,$$

$$w(\varepsilon^1 \otimes \varepsilon^1) = 0.$$

So

$$w(b^*\rho) = (1 + x_1 + x_2)(1 + x_1)(1 + x_2) \cdot 1 = 1 + x_1x_2$$

(using $x_1^2=x_2^2=0$ and note that we are in \mathbb{Z}_2 -coefficients). $w_1(\xi)=w_1(c^*\rho)=w_1((a\vee b)^*\rho)=w_1(a^*\rho)+w_1(b^*\rho)=u+x_1x_2=u+u^2,$

where the third equation holds by Remark 2.22.

Remark 2.22. $\iota_1: P \hookrightarrow P \vee T$ and $\iota_2: T \hookrightarrow P \vee T$ induce projection on cohomology $\iota_1^*: H^i(P \vee T) = H^i(P) \oplus H^i(T) \to H^i(P)$ and $\iota_2^*: H^i(P \vee T) = I^i(P) \oplus I^i(P)$ $H^i(P) \oplus H^i(T) \to H^i(T)$, i.e., for any $x \in H^i(P \vee T)$, we have $x = \iota_1^* x + \iota_2^* x$. Let $f = a \vee b$. Then $f\iota_1 = a$, $f\iota_2 = b$. For any $w_i(f^*\rho) \in H^i(P \vee T)$, we have

$$\begin{split} w_i(f^*\rho) &= \iota_1^* w_i(f^*\rho) + \iota_2^* w_i(f^*\rho) = \iota_1^* f^* w_i(\rho) + \iota_2^* f^* w_i(\rho) \\ &= (f\iota_1)^* w_i(\rho) + (f\iota_2)^* w_i(\rho) = a^* w_i(\rho) + b^* w_i(\rho) = w_i(a^*\rho) + w_i(b^*\rho), \end{split}$$

for
$$i > 1$$
.

So $w(\xi) = 1 + u + u^2$. Then

$$w(\tau \overline{X} + 7\xi) = w(\tau \overline{X})w(\xi)^7 = (1 + u + u^2)^8 = 1.$$

One can find the details of the computation showing that this manifold has Kervaire invariant one in [3].

Constructing an extended power of dimension 30 works, but can this method be used to construct an example in dimension 62? Actually, it is not easy by means of Theorem D in [3].

Let $G_k := \Sigma_2 \wr \cdots \wr \Sigma_2$ (k's Σ_2). Consider $Y_{G_k}(S^7)$ with dim $Y = d = 2^{l+1} - 2 - 7 \cdot 2^k$. By **Remark 2.3**, dim $Y_{G_k}(S^7) = 2^{l+1} - 2$.

 $2^{l+1}-2=62$ implies l=5. With dim $Y=2^6-2-7\cdot 2^k\geq 0$, we have the only possibilities of (k,d) are (0,55),(1,48),(2,34),(3,6). All cases satisfying d>2 meeting the condition of Theorem D in [3]. So given any framing of S^7 , and α a stable trivialization of $\tau \overline{Y}+7\xi$, then $K(Y_{G_k}(S^7),\alpha_{G_k}(F))=0$. Indeed, replacing $\alpha_{G_k}(F)$ with another framing can make the Kervaire invariant nontrivial, but it is not easy to find such a framing.

References

- [1] Stack exchange. Stiefel-whitney classes and connected sum, 2017. Accessed: 2025-11-07.
- [2] Allen Hatcher. *Algebraic topology*. Cambridge University Press, Cambridge, 2002.
- [3] John D. S. Jones. The Kervaire invariant of extended power manifolds. *Topology*, 17(3):249–266, 1978.
- [4] Michel A. Kervaire. A manifold which does not admit any differentiable structure. Commentarii Mathematici Helvetici, 34(1):257–270, 12 1960.
- [5] Yikai Teng. A note on stiefel-whitney classes, 2021. Accessed: 2025-11-07.