
An Introduction to Higgs Bundles
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Abstract

This note will introduce the basic knowledge necessary for Higgs bun-
dles and the definition of Higgs bundles and non abelian Hodge equiva-
lence, which is an application of the moduli space of Higgs bundles.
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1 Introduction

Higgs bundles appear at the crossing of various topics in mathematics and
physics. This note aims to introduce the Higgs bundle from basic knowledge
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and come to a picture comprehension of Higgs bundles. Sections 2,3,4 prepare
preliminary knowledge, and the rest introduce Higgs bundles. For picture de-
scription, [8] is recommended, and readers can read [2] for further discussion.
One can see recent applications in [10].

2 Differential forms of (p,q) type

2.1 ∧p,q for vector spaces

Let VR be an R-vector space. Consider a linear transformation J : VR → VR
fulfilling J2 = −id; the eigenvalues are ±i /∈ R. That motivates us to comlexifies
VR to Vc = VR ⊗R C.

Definition 2.1. Let V be a R-vector space. The complexification of VR is a
R-linear map f : VR → Vc, where Vc is a C-vector space, such that for any
R-linear map g : VR → WC, there exists a unique f̄ : Vc → WC rendering the
following diagram commutes:

VR Vc

WC

f

g f̄

□

Remark 2.2. There are two equivalent ways to construct the complexification
of a real vector space.

• f : VR → VR ⊕ VR, v 7→ (v, 0) is acomplexification of V

• g : VR → VR ⊗R C, v 7→ v ⊗ 1 is a complexification of V

□

Remark 2.3. One can read [1] for more discussion of complexification.

We can extend R-linear J : VR → VR to C-linear J̃ : Vc → Vc by setting
J̃(v ⊗ a) = J(v) ⊗ a. Since J̃2(v ⊗ a) = −v ⊗ a, we have J̃2 = −id. So J̃ has
eigenvalues ±i on Vc.

Construction 2.4. (a) Denote V 1,0 = E(J̃ , i), eigenspace of i for linear trans-
formation J̃ . (b) Denote V 0,1 = E(J̃ ,−i)

□

Then we have Vc = V ⊗ C = V 1,0 ⊕ V 0,1. V 1,0 ≃R V 0,1 by conjugation
v ⊗ a = v ⊗ ā. Then we denote VJ := V 1,0, the C-vector space obtained by J .

Assume dimCV
1,0 = n. Next we consider exterior algebras of those C-vector

spaces: ∧VJ :=
⊕n

p=1 ∧pVJ , ∧V 1,0 :=
⊕n

p=1 ∧pV 1,0, ∧V 0,1 :=
⊕n

p=1 ∧pV 0,1.(They
are graded algebra with product ∧)
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Remark 2.5. Here is a quick review for ∧. Let V be a K-vector space with basis
(e1, e2, · · · , en) and V ∗ be dual space with basis (de1, de2, · · · , den) fulfilling
dei(ej) = δij. An element T ∈ ⊗kV ∗ is a multi K-linear map V ×V ×· · ·V → K.

Define a space

∧kV = {T ∈ ⊗kV ∗|T (v1, · · · , vk) = (−1)σT (vσ(1), vσ(2),··· ,vσ(k)
),∀σSk}

For T ∈ ⊗kV ∗, S ∈ ⊗lV ∗, define wedge T∧S = 1
k!l!

∑
π∈Sk+l

(−1)
π
(T ⊗ S)

π
,

where (T ⊗ S)π(v1, · · · , vk+l) = T ⊗ S(vπ(1),··· ,vπ(k+l)
). Specially, de1 ∧ de2 ∧

· · · ∧ dek =
∑

π∈Sk
(−1)

π
(de1 ⊗ de2 ⊗ · · · ⊗ dek)

π

The fact is , ∧kV is a vector space with basis {dei1 ∧ dei2 · · · ∧ deik |1 ⩾ i1 <

i2 < · · · ik ⩾ n} and thus dim ∧kV =

(
n
k

)
□

Definition 2.6. Denote ∧p,qV := Lin(u ∧ w : u ∈ ∧pV 1,0, w ∈ ∧qV 0,1), where
Lin(•) means spanned vector space.

□

Finally, we can state the decomposition of differential forms of (p, q)-type:

Property 2.7. ∧VJ =
∑2n

r=0

∑
p+q=r ∧p,qV

2.2 Differentrial forms of (p, q)-type of manifold

The almost complex structure of a manifold assigns a complex structure to each
tangent space (fiber of a tangent bundle).

Definition 2.8. Let X be a differentialble manifold of dimension 2n and J :
TX → TX a differentiable vector bundle iso such that Jx : TxX → TxX is a
complex structur for TxX, i.e., J2

x = −idTxM for each x ∈ X. We call J an
almost complex structure for differentiable manifolds, and (X,J) is called an
almost complex manifold.

Fact 2.9. A complex manifold X induces an almost complex structure on un-
derlying differentiable manifolds.

Construction 2.10. Let (X, J) be an almost complex manifold. Let (TX)c
denotes the bundle with fiber (TxX)c = TxX ⊗RC. J can extends to a C-linear
bundle map J : TXc → TXc fiber wisely(we still denote this C-linear map by
J).

• Denote TX1,0 be the bundle with fiber TxX
1,0 = E(Jx, i)

• Denote TX0,1 be the bundle with fiber TxX
0,1 = E(Jx,−i)

Then the decomposiiton is TXc = TX1,0 ⊕ TX0,1

□
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Similarly, we have cotangent bundle T ∗Xc = T ∗X1,0⊕T ∗X0,1, and ∧p,qT ∗X
be the bundle with fiber ∧p,qT ∗

xX = Lin(u ∧w : u ∈ ∧pT ∗
xX

0,1, w ∈ ∧qT ∗
xX

1,0)

Definition 2.11. Let π : E → X is a vector bundle. Ω(X,E) = {f : X →
E|πf = idX} The elements in Ω are called sections.

The following special cases of sections are important.

Definition 2.12. Ωr(X) = Ω(X,∧rT ∗X). These sections are called differential
r-forms.

Ωp,q(X) = Ω(X,∧p,qT ∗X). These sections are called the differential forms
of type (p, q) on X

Property 2.13. Ωr(X) =
∑

p+q=r Ω
p,q (X)

2.3 Differential forms valued in the total space E

Definition 2.14. Ωk(X,E) := Ω(X,∧kT ∗X ⊗C E) is called differential forms
of degree k valued in E.

Fact 2.15. For any η ∈ Ωk(X,E), η has the form η = Σaijωi ⊗ ηj with aij ∈
Ω0(X), ωi ∈ Ωk(X), ηj ∈ Ω(X,E)

Remark 2.16. For α ∈ Ωk(X), β ∈ Ωl(X), we have αlandβ ∈ Ωk+l(X).
For E-valued k-forms, we cannot define wedge product, but replaced by wedge
action:

∧ : Ωk(X × Ωl(X,E) → Ωk+l(X))

(ω1, ω2 ⊗ s) 7→ ω1 ∧ (ω2 ⊗ s) := (ω1 ∧ ω2)⊗ s

Therefore, Ω∗(X,E) is a graded module over graded algebra Ω∗(X).

Remark 2.17. One can read [12] for more details.

3 Operators

This section defines six operators: d, ∂, ∂̄, connection, curvature, and Hodge-
star. Reference of this section are [14],[4].

3.1 Operators d, ∂ and ∂̄

d, ∂, ∂̄ are related to decomposition Ωr(X) =
∑

p+q=r Ω
p,q(X).

Definition 3.1. Define πp,q : Ωr(X) → Ωp,q(X) where p+ q = r.
□

Note that if we define a map d : Ωp,q(X) → Ωp,q+1(X), then we can define
operator ∂̄ and ∂.
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Definition 3.2. Define ∂ : Ωp,q(X) → Ωp+1,q(X) by ∂ = πp+1,qd
Define ∂̄ : Ωp,q(X) → Ωp,q+1(X) by ∂̄ = πp,q+1d

□

Hence, the left question is defining d : Ωp,q(X) → Ωp+q+1(X). We can define
d locally.

Definition 3.3. A local frame of a vector bundle π : E → X over open set
U ⊂ X is a set of sections {s1, s2, · · · , sn} such that {s1(x), s2(x), · · · , sn(x)} is
a basis for Ex := π−1(x), for any x ∈ U .

□

Construction 3.4. Let {w1, w2, · · · , wn} be local sections of T ∗X1,0 over U .
Then we can write local frames of T ∗X1,0 and ∧p,qT ∗X:

• {w1, w2, · · · , wn} is a local frame of T ∗X1,0 over U .

• {wI ∧ wJ ||I| = p, |J | = q}

Hence, any section s ∈ Ωp,q(X) can be represented in U as s =
∑′

|I|=p,|J|=q aIJw
I∧

w̄J where aIJ ∈ Ω0(X)

Remark 3.5. I is an ordered set (k1, k2, · · · , kp) with 1 ⩾ ki ⩾ n. Define |I| be
ita cardinate p. Denote wI = wk1

∧wk2
∧ · · · ∧wkp

. Denote Σ′ as a summation
for (I, J) ordered from small to big.

□

Definition 3.6. Define d : Ωp,q(X) → Ωp+q+1, s =
∑′

|I|=p,|J|=q aIJw
I ∧ w̄J 7→

ds :=
∑′

|I|=p,|J|=q daIJ ∧ wI ∧ w̄J + aIJd(w
I ∧ w̄J)

Remark 3.7. The second d in d(wI ∧ w̄J) is the common dofferential for k-
forms d : Ωk(X) → Ωk+1(X) locally be d(

∑
|I|=k aIw

I) =
∑

|I|=k
∂aI

∂xi dx
i ∧ wI .

The meaning of the symbol “d” can be clarified from the context.

Property 3.8. (a)d2 = 0
(b)On a complex manifold, d = ∂ + ∂̄

□

3.2 Connection and curvature

Definition 3.9. ([4]) A connection D on a C-bundle E → S is a differential
operator D : Ωk(S,E) → Ωk+1(S,E) satisfying D(α∧σ) = dα∧σ+(−1)pα∧Dσ
where α ∈ Ωk(S,C), and σ ∈ Ω(S,E).

Definition 3.10. The curvature of a connection D is the operator FD = D2 :
Ωk(S,E) → Ωk+2(S,E)

Remark 3.11. After choosing a frame, connections and curvatures can be
described by matrices. For details, one can read ChIII.1,2 in [14]
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3.3 Hodge-star

Let V be a real vector space of dimension d equipped with an inner product.
It induces the inner product on ∧pV for any p. Namely, if {e1, · · · , ed} is an
orthonormal basis for V , then {ei1 ∧ · · · eip : 1 ⩾ i1 < i2 < · · · < ip ⩾ d} is an
orthonormal basis for ∧pV .

Definition 3.12. An orientation on V is a choice of the ordering basis up to
an even permutation.

Remark 3.13. An orientation is specifying a d-form and let it be positive.
Then, any odd permutation is the minus of this d-form.

Definition 3.14. (Volume element) Volume element is e1∧· · ·∧ed, {e1, · · · , ed}
is an orthonormal basis. We denote the volume element by vol.

Remark 3.15. vol is an orientation of V .

Definition 3.16. (Hodge ⋆-operator ) Define a mapping ⋆ : ∧pV → ∧d−pV
by setiing

⋆(ei1 ∧ · · · eip) =

{
ej1 ∧ · · · ∧ ejd−p

, σ is even

−ej1 ∧ · · · ∧ ejd−p
, σ is odd

where j1, · · · , jd−p is the complement of {i1, · · · , ip} in {1, · · · , d} and σ =
{i1, · · · , ip, j1, · · · , jd−p}.

Remark 3.17. Hodge ⋆ is defined so that ei1 ∧ · · · eip ∧ ⋆(ei1 ∧ · · · eip) = e1 ∧
· · · ∧ ed =: vol.

Property 3.18. For α, β ∈ ∧pV, α ∧ ⋆β = ⟨α, β⟩ vol

Remark 3.19. The above property uses an obvious result eI ∧ ⋆eJ = δIJvol.

Property 3.20. Consider Hodge ⋆ on Riemannian surface (dimension 2). By
definition, it is easy to show the following:

(a)⋆(dx) = dy, ⋆(dy) = −dx
(b)⋆2 = −id
(c)⋆(dz) = idz̄, ⋆(dz̄) = −idz
(d)For any α ∈ ∧1,0(Σ), ⋆(α) = −iα; For any β ∈ ∧0,1(Σ), ⋆β = iβ.
(e)⋆ does not depend on holomorphic coordinates, since α = α1,0 +α0,1 and

both α1,0 and α0,1 does not depend on holomorphic charts.

Then we can generalize Hodge ⋆ to Ωk(Σ, Hom(E1, E2)).

Definition 3.21. Let Ψ =
∑k

i=1 αi ⊗ ψi ∈ Ωk(Σ, Hom(E1, E2)) where αi ∈
Ωk(Σ,C) and ψi ∈ Γ(Σ, Hom(E1, E2)).

Define ⋆Ψ = sumk
i=1(⋆α) ⊗ ψ∗ ∈ Ω2−k(Σ,Hom(E2,E1)), where psi∗i means

adjoint of ψ under Hermitian structure.

Remark 3.22. ⋆ϕ =

{
iϕ∗, ϕ ∈ Ω1,0(Σ, Hom(E1, E2))

−iϕ∗, ϕ ∈ Ω0,1(Σ, Hom(E1, E2))
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4 Holomorphic vector bundles

4.1 Holomorphic functions on manifold

This section aims to define holomorphic function over Euclidean spaces and
generalize it to manifolds.

Definition 4.1. Let D be an open set of Cn. A complex-valued function f is a
holomorphic function on D if and only if it is complex analysis, i.e., near each
point x ∈ D, f can be written as a convergent power series

f(z1, z2, · · · , zn) =
∞∑

a1,a2,··· ,an=0

ka1,a2,··· ,an (z1 − x1)
a1 (z2 − x2)

a2 · · · (zn − xn)
an

□

To define holomorphic functions on manifolds, we need an “instructive book”
which specifies holomorphic functions on manifolds.

Definition 4.2. A holomorphic structure on a C-valued manifold M is a family
of C-valued continous functions defined on the open sets ofM , denoted by O(M),
such that:

• (define on local trivialzation by Definition 4.1) For any p ∈ M , there
exists an open neiborhood Up and a homeomorphism h : Up → U , where
U is open in Cn, such that

f : V → C ∈ O(M) if and only if fh−1 ∈ O(h(V ))

where O(h(V )) is the set of holomorphic functions on h(V )

• (define on general open sets by restricting to each trivialization opens) Let
f : U → C and assume U = ∪iUi where Ui open in M . Then f ∈ O(M)
if and only if f |Ui ∈ O(M)

□

Remark 4.3. One may think that a holomorphic structure is a sheaf. It must
be corrected because the holomorphic structure is just an instruction book.
When we have this instruction book, we can tell which function is holomorphic,
and then we can define the sheaf of holomorphic functions on manifolds.

4.2 Two characteristics for holomorphic bundles

We have defined holomorphic structures on manifolds. In this section, we will
define holomorphic structure on vector bundles.

Definition 4.4. A vector bundle is a continous map π : E → X between two
topological spaces such that: for each x ∈ X, there exists a neighberhood Ux
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and a homeomorphism h : π−1(Ux) → Ux × V where V is a given vector space
of dimension n such that the following diagram commutes

π−1(Ux) Ux × V

Ux

h

π p1

Terminologies: π is called a vector bundle of rank n. E is called total space.
X is called base space. V is called fiber. □

There are two equivalent definitions of holomorphic structure on vector bun-
dles. One is defined by [4]; it is simple to write but not easy to understand. The
other is represented by [14]; it is simple to understand but complex to write.

Definition 4.5. (Definition 2.8 in [4]) A holomorphic structure on a com-
plex vector bundle E over Riemannian surface Σ is a differential operator
∂̄E : Ωp,q(Σ, E) → Ωp,q+1(Σ, E) satisfying the leibniz rule:

if α ∈ Ωp,q(Σ, E), σ ∈ Ωk,l(Σ, E), we have ∂̄E(α∧σ) = (∂̄Eα)∧σ+(−1)p+qα∧
∂̄Eσ.

We call a section σ of E holomorphic if ∂̄Eσ = 0
□

Remark 4.6. Riemannian surface is a 2-dimensional differential manifold whose
local transformations are holomorphic.

Remark 4.7. (a) ∂̄E is called the Dolbeault operator in some references.
(b) Note that ∂̄E is different from ∂̄.

□

Remark 4.8. Why does the Leibneiz rule appear very often? One can see
one of the reasons in the Definition 2.1.4 of [13]. Roughly speaking, those linear
operators(concepts in algebra) satisfying the Leibneiz rule describe the “tangent
vectors”(a concept in geometry).

□

Holomorphic bundles are vector bundles equipped with a holomorphic struc-
ture.

Definition 4.9. [14] A C-vector bundle is called a holomorphic vector bundle
if E and X are holomorphic manifolds (manifolds equipped with holomorphic
structure), π is a holomorphic morphism, and the local trivializations are holo-
morphic isomorphisms.

Remark 4.10. A holomorphic bundle is a vector bundle with any morphism
that appears holomorphic.

Two characteristics describe holomorphic vector bundles. The first charac-
teristic is rank, the dimension of the fibers (vector space). The other charac-
teristic is degree, the “twistedness” of the bundles (I recommend an interesting
online page[7])
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Definition 4.11. The degree of a complex vector bundle E → Σ is:

degE =

∫
S

c1(E)

Remark 4.12. One can find the definition of Chern class in [14]. Note that
c1(E) ∈ H2(Σ,C). Any 2-cochain in H2(Σ,C) acts on an area (2-chain) is a
number. That is the meaning of the integral.

Property 4.13. (a) deg(E∗) = −deg(E)
(b) deg(E1 ⊗ E2) = deg(E1)rank(E2) + rank(E1)deg(E2)

The two characteristics can determine many things. Vector bundles over
compact connected Riemann surfaces are classified by degree and rank since the
following result holds.

Theorem 4.14. Let Σg be a compact connected Riemann surface. There is a
one-to-one correspondence:

{isomorphisim classes of vector bundles over Σg} → Z+ × Z

E 7→ (rank(E), deg(E))

□

Remark 4.15. One can read [9] for more discussion of degree.

Remark 4.16. We have an algebraic geometry version of degree; see [6].

5 Higgs bundles and the picture

Let S be a closed orientable surface of genus g ⩾ 2 and Σ be a Riemann surface
structure on S.

Definition 5.1. The canonical bundle of Σ is the cotangent bundle, denoted
by K.

Definition 5.2. (Definition 2.10 in[4]) A rank n Higgs bundle over Σ is a pair
(E, ϕ) where E is a holomorphic vector bundle of rank n and ϕ ∈ H0(Σ, End(E)⊗
K), called the Higgs field.

What does H0(Σ, End(E)⊗K) mean?
End(E) is a bundle with fiber End(Ex), K is a bundle with fiber T ∗

xΣ, and
then we have tensor of vector bundles End(E)⊗K with fiber End(Ex)⊗Kx =
End(Ex)⊗ T ∗

xΣ.
The bundle End(E)⊗K induces a sheaf of sections, i.e., sheaf End(E)⊗K

with End(E)⊗K(U) be sections of bundle End(E)⊗K over U .
H0(Σ, End(E)⊗K) is a cohomology group with coefficients of sheaf. The-

orem 3.11 in [14] shows H0(Σ, End(E)⊗K) = End(E)⊗K(Σ).
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Remark 5.3. Note that End(E)⊗K(Σ) ̸= End(E)(Σ)⊗K(Σ). The reason is
that: Presheaf H:U 7→ A⊗B(U)(H is not a sheaf, where A, B be two sheaves,
and U is an open set of X. A⊗B is the sheafification of the presheaf H.

Although End(E) ⊗ K(Σ) ̸= End(E)(Σ) ⊗ K(Σ), we can consider on the
stalk level because sheafification remains stalks unchanged, i.e., we have the
following property:

Property 5.4. Let F be a presheaf over X and X be its sheafification. Then
Fx = F̃x for any x ∈ X.

Hence for Higgs field ϕ ∈ End(E)⊗K(Σ), we view the section ϕ as family of
stalks {ϕx ∈ End(Ex)⊗Kx}. Equivalently, a family of morphisms {ϕx : Ex →
Ex⊗Kx}. Indeed, we have isomorphism End(Ex)⊗Kx

(1)
=== End(Ex)

∗⊗Kx
(2)
===

Hom(Hom(Ex, Ex),Kx). (1) is because End(V ) = Hom(V, V ) = V ∗ ⊗ V =
V ⊗ V ∗ = (V ∗ ⊗ V )∗ = EndV ∗. (2) is because Hom(V1, V2) = V ∗

1 ⊗ V2.
ϕ ∈ End(E)⊗K(Σ) is a family of morphisms {ϕx = Ex → Ex⊗Kx}. Tensor

Kx means a twist of fiber Ex. View picture in [7].
We will end this section by showing a picture for Higgs bundles[3]: After

choosing a frame of E, ϕ is a matrix of holomorphic one-forms with eigenvalues
valued in K. Indeed, at each point x ∈ X, ϕx ∈ EndEx ⊗ Kx is a matrix of
holomorphic one-form valued in Kx ⊂ K.

• Fig 1(a) Let E be a Higgs bundle over Σ with fiber Ex at x ∈ Σ

• Fig1(b) At each point x ∈ Σ we can “draw” its eigenvalues, and finally,
we can obtain a graph of eigenvalues, denoted by Σ̃. Σ̃ is a branched cover
over Σ(may degenerate, so may not be a cover).

• Fig1(c) L→ Σ̃ is a line bundle with each point in Σ̃ (an eigenvalue of ϕx
for some x ∈ Σ) assign its eigenvector.

• Fig1(d) Recall that a vector space can split into a direct sum of eigenspaces
by a linear transformation. Hence, at a regular point b, Eb = ⊕iLpi

We have introduced a single Higgs bundle. However, moduli spaces of Higgs
bundles (a collection of Higgs bundles) are more important than a single Higgs
bundle. One tool to study the moduli space of Higgs bundles is Hitchin fibration,
see [4]. One can read [11] for more details of moduli spaces. The following section
provides an example of the application of moduli spaces of Higgs bundles.

6 Non abelian Hodge equivalence

6.1 More structures

Representations
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(a) (b)

(c) (d)

Figure 1: pictures for Higgs bundle

Definition 6.1. (irreducible and reductive) A representation ρ : π1(S) →
SL(n,C) is called irreducible (resp. reductive) if the induced representation on
Cn is irreducible (resp. completely reducible)

Remark 6.2. It is a definition analog to the representation of groups.

Connections
Let D be a connection on a complex bundle E. Let O be the trivial line

bundle over S. Let O be the trivial holomorphic line bundle over Σ.

Remark 6.3. Note that, as a Riemannian surface, Σ is surface S equipped
with a holomorphic structure.

Definition 6.4. (irreducible and reductive)
(a) D is irreducible if there exists no proper D-invariant subbundle.

(b) D is reductive if (E,D) =
⊕k

i=1 (Ei, Di) where each Di is an irreducible
connection on Ei.

Remark 6.5. (Determinant bundle detE) Let E → X be vector bundle of rank
n with fiber V . detE is the vector bundle with fiber ∧nV . Since dim ∧n V =(
n
n

)
= 1, detE is a line bundle.

Definition 6.6. (flat) A connection is falt if curvature vanishes, i.e., FD =
D2 = 0

Definition 6.7. (SL(n,C)) Assume E satisfies detE ≃ O. D is called SL(n,C)
connection if its induced connection on the trivial line bundle detE is d.
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Remark 6.8. d is a connection on a trivial bundle.

For any connection D, the D0,1 in the decomposition D = D1,0 + D0,1

is a holomorphic structure on E. Conversely, there are many connection D
satisfying D0,1 equals to given ∂̄E . It motivates us to pick a special connection-
Chern connection.

Definition 6.9. Let (E, ∂̄E , H) be a holomorphic bundle with Hermitian metric
H. There exists a unique connection ∇∂̄E ,H such that

(a)∇0,1

∂̄E ,H
= ∂̄E

(b)∇∂̄E ,H is unitary
Such a connection is called a Chern connection.

Hermitian metric

Definition 6.10. (Hermitian metric) A hermitian metric H on bundle E is
assigning hermitian metric to each fiber smoothly.

There are two equivalent definitions for harmonic metrics.

Property 6.11. A connection on a Hermitian bundle (E,H) decomposes uniquely
D = DH+ΨH such that DH is unitary and ΨH ∈ Ω1(Σ, End(E)) is self-adjoint.

Remark 6.12. A connection D is unitary if for any two sections s, t ∈ Γ(S,E)
we have

d(H(s, t)) = H(Ds, t) +H(s,Dt)

Unitary connection is a connection compatible with Hermitian metric.

Definition 6.13. (Energy functional) Fix flat SL(n,C)-vector bundle (E,D)
and a conformal Riemannian metric g0 on Σ. Define: E(H) =

∫
Σ
⟨ΨH ,ΨH⟩ω

be energy functional.

Definition 6.14. (Harmonic metric) Hermitian metric H on (E,D) is called
harmonic if it is a critical point of E(H).

Remark 6.15. There is the least action principle in physics. We always need
to minimize energy in the real physical world, which helps us to choose a special
Hermitian metric.

Definition 6.16. (Harmonic metric, equivalently) Hermitian metric H on
(E,D) is called harmonic if DH(⋆ΨH) = 0.

Bundles

Definition 6.17. (SL(n,C)-Higgs bundle) A SL(n,C)-Higgs bundle is a
Higgs bundle satisfying detE is a trivial line bundle over Σ and trϕ = 0.

Definition 6.18. (ϕ-invariant) Let ϕ ∈ H0(Σ, End(E)⊗K) be a Higgs field
of a Higgs bundle. A subbundle F of E is ϕ-invariant if ϕ(F ) ⊂ F ⊗K

Definition 6.19. Define ratio µ(E) of bundle E as µ(E) = degE/rankE
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Definition 6.20. (semistable,stable,polystable)
(a) A Higgs bundle (E, ϕ) is semistable if each proper ϕ-invariant subbundle

F satisfies µ(F ) ⩾ µ(E).
(b)A Higgs bundle (E, ϕ) is stable if each proper ϕ-invariant subbundle F

satisfies µ(F ) < µ(E).
(c) A Higgs bundle (E, ϕ) is polystable if it is a direct sum of stable Higgs

bundles of the same ratio.

Harmonic maps
The map f is harmonic if it is a critical point of the energy functional E(f).

One can find the concrete formula for E(f) in [4].

Property 6.21. Hermitian metric H being harmonic (minimizing E(H)) is
equivalent to f : (S̃, g̃0) → N being harmonic (minimizing the energy of f),
where N is some subspace contained in Mn(C). Details can be seen in [4].

6.2 Correspondence

Non abelian Hodge equivalence is about one-to-one correspondences between
Higgs bundles, connections, harmonic maps, and representations:

Higgs bundles Connections Harmonic maps

Representations

(a) (b)

(c)

(a) Theorem in Fig2 and Fig3 are form [4]

Figure 2: obtain a flat connection from a Higgs bundle

(b)

Fact 6.22. Let D be a reductive flat SL(n,C)-connection on E. There exists
a harmonic metric H on E such that the induced metric detH on detE ≃ O is
1. If D is irreducible, the harmonic metric is unique.

13



Figure 3: obtain a Higgs bundle from a flat connection

By Property 6.21, the following result holds:

Fact 6.23. Let D be a flat irreducible SL(n,C)-connection on a vector bundle
E over Σ with holonomy representation ρ : π1(S) → SL(n,C), there exists a
unique ρ-equivariant harmonic maps f : Σ̃ → SL(n,C)/SU(n)

(c)
There is a one-to-one correspondence:

(E,D) 7→ [ρ : π1(S) → SL(n,C)]

[l] 7→ holonomy of D, i.e., parallel transport along loop l defines an element in SL(n,C)

If D is flat, the holonomy of D only depends on the homotopy class of loops;
thus, ρ is well-defined.

Definition 6.24. (Definition 2.23 in [4])
(1) The space of gauge equivalence classes of polystable SL(n,C)-Higgs bun-

dles is called the moduli space of SL(n,C)-Higgs bundles, and we denote it by
MHiggs(SL(n,C)).

(2)The space of gauge equivalence classes of reductive flat SL(n,C)-connections
is called the de Rham moduli space and we denote it by MdeRham(SL(n,C)).

(3)The space of conjugacy classes of reductive representations from π1(S)
into SL(n,C) is called the representation variety, and we denote it byRep(π1(S), SL(n,C))

(4)The space of equivariant harmonic maps from Σ̃ to N modulo isometries
in N is denoted by H

□

We have the following one-to-one correspondence, called non-abelian Hodge
correspondence.

MdeRham(SL(n,C)) ≃ H ≃ MdeRham(SL(n,C)) ≃ Rep(π1(S), SL(n,C))

(E, ϕ) 7→ (f : Σ̃ → N) 7→ D 7→ the holonomy of D
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